透過您的圖書館登入
IP:18.219.80.85
  • 期刊
  • OpenAccess

直升機主旋翼轉速控制系統

Rotor Speed Control in Helicopter

摘要


模型直昇機在飛行時,主旋翼為其升力與推力的主要來源。當主旋翼的負荷改變而產生過大的轉速變化時,會造成升力不穩定並且使旋翼與機身發生震動。因此一個良好的飛行控制,其主旋翼轉速的穩定性也是很重要的一環,所以我們便針對模型直昇機的引擎轉速設計一套控制系統。在規劃模型直昇機的引擎轉速控制系統時,由於CAN通訊協定具有即時通訊的功能,而且是個多主系統多路傳輸通信協定系統,適用於多個微處理器的系統,所以我們運用CAN通訊系統,將兩顆微處理器(其中一顆微處理器測量尾旋翼轉速,另一顆微處理器負責操控油門伺服馬達以控制模型直昇機的轉速)構成一套模型直昇機的引擎轉速控制系統。另外在設計過程中我們使用數位信號處理器作為一個開發站台,負責傳送控制命令與接收資料,提供使用者一個即時操作介面,整個系統都以CAN通訊協定進行。在此控制系統架構下,我們針對引擎的油門命令到尾旋翼轉速做系統鑑別實驗,並且運用RST設計方法設計出一個防止積分飽和控制器,然後經由負荷實驗來測試控制器的性能,發現在相同的干擾情況下,控制器將主旋翼的轉速偏差值由開迴路時的7.3 rps降至1.8 rps,成功地完成一套模型直昇機的引擎轉速控制系統。

並列摘要


We design a rotor speed controller for R/C model helicopter to limit the vibration and jitter due to the unstable lift and thrust force caused by main rotor under varying rotor speed. We implement the CAN bus to regulate the rotor speed as CAN bus has real time protocol and multi processor function. Two Microchip PIC18F458 are installed in our model helicopter. One Microchip PIC18F458 measures the engine speed from the tail rotor, and the other control the servo motor to actuate the fuel valve. DS1103 of dSPACE is a signal processor to collect the data and control the helicopter in manual mode through the CAN bus protocol. In our control system, we focus the fuel valve actuation and tail rotor speed to design a system identification. RST controller with anti-windup function has been test successfully with real loading and disturbance imposed, and the differential rotor speed reduced to 2.5 rpm compare to 7.3 rpm under open loop control.

延伸閱讀