透過您的圖書館登入
IP:52.15.128.243
  • 期刊

地面雷射掃描儀系統校正:結合室外標準基線場與室內校正場

System Calibration of Terrestrial Laser Scanners by Using Range and Indoor Calibration Fields

摘要


地面雷射掃描儀(Terrestrial Laser Scanner),又稱為地面光達(Terrestrial LiDAR),因其快速且精準獲取物體表面高密度三維坐標(點雲)的能力,近年來廣泛地被應用於工程測量領域,可用於建築物、隧道工程、森林調查、土木工程等測量工作。地面雷射掃描儀會在瞬間產生大量點雲資料,每秒可達上萬點甚至數十萬點以上,但在龐大的點雲資料中可能含有許多不同種類誤差,誤差的來源可能與儀器本身量測能力、儀器品質不良(未校正)、環境因素影響、人為操作不當等等原因有關。近年來,許多先進發表了有關地面雷射掃描儀使用不同方法進行校正的一系列論文,討論了地面雷射掃描儀可能的誤差來源和相關改正參數,本研究提出了將自率定法結合個別組件校正的混合模式能更準確地模擬地面雷射掃描儀系統性誤差的理論,並以自率定法為基準提出了結合室外標準基線場和室內校正場的校正方法來進行測試,該方法克服自率定法受室內空間大小限制的缺陷,將地面雷射掃描儀的測距方面在全長266m的標準基線場獨立校正,再將校正成果乘常數-103ppm與加常數1.4mm帶入自率定法中作為測距方面改正參數使用,將器差絕對值平均縮小為3.9mm。混合模式初步測試結果,器差的絕對值平均與均方根值都呈現變小趨勢,可以初步判定應用本研究提出之混合模式方法來對地面雷射掃描儀進行校正與系統性誤差分析,的確可以為地面雷射掃描儀校正帶來正面的影響,通過計算結果可協助使用者更謹慎地了解儀器目前量測品質,使用者可依計算結果評估是否該儀器需回原廠檢校。

並列摘要


Due to its outstanding 3D modeling capabilities, Terrestrial Laser Scanner (TLS) has been widely used in engineering surveying fields in recent years. However, different types of errors exist in huge point cloud data, and they would affect the accuracy of point cloud data through error propagation. The sources of these errors may come from instrumental factors (if it is not be calibrated), environmental factors, human factors, etc. In order to ensure the quality of the TLS data, systematic errors should be properly calibrated and corrected before using it. In this study, the theory that the self-calibration combined with the individual components calibration can more accurately simulate the systematic error of TLS was proposed. And a calibration method combining standard baseline field and indoor correction field is proposed for testing. This method overcomes the limitation of indoor space size, and independently calibrate the TLS rangefinder in the standard baseline field with a total length of 266 m. Then the calibration result multiplication constant -103 ppm and the addition constant 1.4 mm are brought into the self-calibration method as additional parameters, and the absolute average value of the difference is reduced to 3.9 mm. According to the preliminary test results, using the theory proposed in this study to perform TLS calibration and analyze systematic errors can help users to more carefully understand the current measurement quality of the instrument. Users can evaluate whether it is necessary to return to the factory for inspection according to the calibration results.

參考文獻


Chow, J. C. K., Lichti, D. D., Glennie, C., & Hartzell, P. (2013). Improvements to and Comparison of Static Terrestrial LiDAR Self-Calibration Methods. Sensors, 13(6), 7224-7249. doi: 10.3390/s130607224
Cuartero, A., Armesto, J., Rodriguez, P. G., & Arias, P. (2010). Error Analysis of Terrestrial Laser Scanning Data by Means of Spherical Statistics and 3D Graphs. Sensors, 10(11), 10128-10145. doi: 10.3390/s101110128
Habib, A., Bang, K. I., Kersting, A. P., & Chow, J. (2010). Alternative Methodologies for LiDAR System Calibration. Remote Sensing, 2(3), 874-907. doi: 10.3390/rs2030874
Lichti, D. D. (2007). Error modelling, calibration and analysis of an AM-CW terrestrial laser scanner system. Isprs Journal of Photogrammetry and Remote Sensing, 61(5), 307-324. doi: 10.1016/j.isprsjprs.2006.10.004
Lichti, D. D. (2010b). Terrestrial laser scanner self-calibration: Correlation sources and their mitigation. Isprs Journal of Photogrammetry and Remote Sensing, 65(1), 93-102. doi: 10.1016/j.isprsjprs.2009.09.002

延伸閱讀