透過您的圖書館登入
IP:3.136.26.20
  • 期刊
  • OpenAccess

Analysis of Phonon Heat Conductivity of Semiconductors

並列摘要


The various inadequacies of Callaway's phenomenological model of lattice thermal conductivity has been critically analyzed and the model is repaired in a modified form in which the systematic replacement of life time by line widths amicably resolves the various issues. The involvement of various scattering events in the heat transport, e.g., boundary scattering, impurity scattering, anharmonic phonon scattering, resonance scattering and interference scattering has been addressed in the new framework with the help of quantum dynamical many body theory. The technological importance of Ge is well known and hence it becomes significantto investigate the thermal behavior of it in details as its electrical properties are temperature dependent. Further, the CdTe also shows its vital importance in the fabrication of infrared optical windows and photo voltaic solar cells. The phonon heat conductivity of Ge and CdTe in the temperature range 3.3-298 K and 1.780-239.260 K based on the modified Callaway model have been analyzed and excellent agreements between theory and experiments are reported. The present formulation is found to be well justified and can be successfully applied for the calculations of thermal conductivity of several other crystalline solids.

延伸閱讀