透過您的圖書館登入
IP:3.139.83.202
  • 期刊

離子交換的熱力學研究(I)

Thermodynamic Study of Ion Exchange (I)

摘要


式(1.30)至(1.39)係離子交換平衡的基本方程式。由於離子交換平衡維繫於高濃度樹脂相與低濃度溶液相之間,除須考慮離子間的主要反應外,樹脂相與其外面溶液間的離子與水之交互作用亦應加以考慮。故而,包括整個離子與水間交互作用所生之熱力學效應的水合物數目之項,應列入於此基本方程式。但截至目前,一般水溶液的研究,對水合數目尚無其確定的數值。因此必須採用如下的假設:在樹脂相與其外面溶液相內,各類水合物數目可能不相等,但可忽略樹脂相與其溶液相成份變化所引起的水合數目變化。如此,依據水和未水合離子之項,可導出式(3.17)至(3.26),並論述Glueckauf的基本方程式與(3.17)至(3.19)和(3.23)各式中p=1,q=1時相一致。若樹脂外面溶液的水合數目為常數,則樹脂外面的溶液為根據此全部水與未水合的離子,同時在樹脂相內時,乃依據游離水和含水合物之項表示(4.1)到(4.12)之方程式。式(4.1)至(4.12)部份符合Gregor的基本方程式。同時指出,唯有在樹脂外溶液濃度甚稀時,式(4.11)和(4.12)較本文之第三部份所述者更為實用。

關鍵字

無資料

並列摘要


Equations (1.30)~(1.39) are the fundamental equations for the ion exchange equilibrium. Because the ion exchange equilibrium is maintained between the resin phase usually very concentrated, and the external solution phase usually very dilute, the difference of the ion-water interaction between these two phases should be considered besides the main reaction of ions. For this reason the terms of hydration numbers defined so as to cover the whole thermodynamical effect of the ion-water interaction are introduced to the fundamental equations. However, at the present time of the solution research we have not any define value for the hydration numder even in ordinary aqueous solution. Therefore it is necessary to adopt the following assumption: the hydration number of each species can be different in the resin phase and in external solution phase, but the change of the hydration number with the change of the composition is negligible both in resin phase and the external solution. This leads to the equations (3.17)~(3.26), which are expressed in terms of total water and unhydrated ions. Glueckauf's fundamental equations are equal to the equations (3.17)~(3.19) and (3.23) substituted p= 1 and q= 1. If we assume the constancy of the hydration number only for the external solution , equations (4.1)~(4.12) are obtained in terms of total water and unhydrated ions for the external solution, and in terms of free water and hydrated ions for the resin phase. Some of those equations correspond to Gregor's fundamental equations. And only in the case of a very dilute external solution, equations (4.11) and (4.12) are more practical than those described in section three.

並列關鍵字

無資料

被引用紀錄


王建中(2009)。Persantin 對脂多醣體誘導大鼠肝損傷之研究〔碩士論文,中山醫學大學〕。華藝線上圖書館。https://doi.org/10.6834/CSMU.2009.00042

延伸閱讀