二氧化鈦因為具有良好的化學穩定性,並且具有可以吸收紫外光作為光觸媒的特性,所以可以應用在許多不同的領域。由於利用陽極處理法製備二氧化鈦具有許多優點,如製程相對較簡易便利、能夠節省成本;或是製備出的二氧化鈦具有大面積規則性、具有奈米孔洞結構,所以近年來受到相當多的學者矚目並逐漸嶄露頭角。本文從簡介鈦的陽極處理的製程參數,即電解液的選用,開始導入主題。藉由調控孔洞尺寸,管壁厚度與長度,可以製備出各種的二氧化鈦奈米管,可以達到在應用上的不同需求。再來簡單介紹二氧化鈦的膜面顯色機制,以及陽極氧化鈦的反應機制。在充分了解鈦的陽極處理製程與機制原理後,在文中亦會介紹陽極氧化鈦的改質,與其相關的應用。例如二氧化鈦奈米管可作為氫氣的感測元件,其卓越的電催化性質,可將其組裝成電極,參與水的分解反應或是有機物的分解,亦可應用於甲醇氧化;另外也可用於染料敏化太陽能電池。
Titanium dioxide possesses outstanding chemical stability and photocatalytic activity, and thus can be applied in many areas. There are many advantages of using anodization process to prepare titanium dioxide nanostructures, such as cheaper and simpler preparation procedures and possible large scale regularity. In this mini-review, we begin the discussion with electrolyte selection, which would affect the pore size, tube wall thickness, and tube length of the nanostructure. A specific electrolyte would give a specific titanium dioxide nanostructure that may find applications in some specific area. The color theory of the titanium dioxide film and the reaction mechanism of the titanium anodization process are then discussed. Also included are modification and applications of anodic titanium oxide nanostructures.