透過您的圖書館登入
IP:3.139.104.214
  • 期刊

奈米量測技術-原子力顯微鏡在生物分子上之應用

Nano-scale Measurement of Biomolecule by Atomic Force Microscopy

摘要


原子力顯微術於研究生物分子結構之生醫相關領域中,已被視為最具潛力且不可或缺之技術。利用其力學獨特之成像方式,在分子結構研究中得以迅速發展。無論是在真空、氣相或液相中,大部分生物樣品皆能於原子力顯微術非破壞之量測特性下進行影像描繪,包括在特定生理條件下觀察生物分子表面之物化特性變化、細胞生長時給予藥處理前後之結構力學量測以及抗體與抗原間專一性作用之相關研究。因此,無論是微生物、細胞、蛋白質甚至基因體之表面型態及結構力學,均能藉由原子力顯微術以奈米級之精確度量測得知。另外,所衍生之導電型原子力顯微術,除了可進行基本原子力顯微術之功能,亦可得到微小範圍之導電性 (電流分佈) 與任意點電流/電壓特性。相信這些技術未來可被廣泛應用在單細胞偵測、單分子微影、奈米操控及表面電學量測等重要之生醫領域。

並列摘要


The potentiality of atomic force microscopy (AFM) make it a admitted technique for the research of biological construction and biomedical applications. In the construction study, AFM can expand swift with the unique imaging. No matter what, biomolecules can be imaged with nondestructive scan by AFM under the environments that range from vacuum, ambient to liquid. Therefore, AFM can be applied to any soft biomolecules (microbiology, cell, proteomics and genomics) with nano-scaled precise scanning, include the physical and chemical properties of biomolecules in the physiological conditions, the structural mechanics of cell surface through medicine treatments and the specific affinity of antibody-antigen interactions. In addition, conductive atomic force microscopy (c-AFM) based on AFM theory, it can receive conductivity (current distribution) and the modulation of current/voltage behavior at any points. The technique can be applied to the single cell detection, monomer lithography, nanomanipulation and surface conductivity in the life-science applications.

被引用紀錄


陳弘銘(2010)。以原子力顯微鏡探討膽固醇及心臟毒素A3對腦硫脂人造細胞膜的作用〔碩士論文,國立清華大學〕。華藝線上圖書館。https://doi.org/10.6843/NTHU.2010.00227
呂翊帆(2016)。隨機及順向聚鄰甲氧基苯胺/聚己內酯靜電紡絲法纖維在組織工程之應用探討〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201600146

延伸閱讀