透過您的圖書館登入
IP:3.12.161.77
  • 期刊

高分子水溶性幾丁聚醣的抗氧化及抗菌活性

Antioxidant and antimicrobial activity of high molecular weight water-soluble chitosan

摘要


幾丁聚醣在化妝品的應用已愈來愈受到重視,本研究的高分子幾丁聚醣的去乙醯化程度為 76.8%,對水的溶解度可達50mg/ml。此外高分子幾丁聚醣對超氧陰離子的清除率活性很高,IC_(50)為0.04mg/ml。在96孔盤的抑菌試驗,高分子幾丁聚醣對抑制金黃色葡萄球菌及沙門桿菌生長的敏感性最高,抑制一半微生物生長的最低抑制濃度(Minimum Inhibitory Concentration Reached by 50%; MIC_(50))為0.05mg/ml,對大腸桿菌、綠膿桿菌及白色念珠菌的效果略差MIC_(50)為0.5mg/ml,對鏈球菌的抑制效果最差,在5mg/ml的濃度仍無任何抑制的效果。試管的抗菌測試則顯示高分子水溶性幾丁聚醣對沙門桿菌及綠膿桿菌的效果最好MIC為0.5mg/ml,對大腸桿菌、金黃色葡萄球菌及白色念珠菌的MIC為1mg/ml,如同96孔盤的抑菌結果對鏈球菌抑制效果最差,需在5mg/ml的濃度才有抑制的效果。研究的結果顯示高分子水溶性幾丁聚醣有潛力應用於化妝品或食品的抗菌產品的開發。

並列摘要


Application of chitosan has been paid much attention in cosmetics. The degree of deacetylaion of chitosan used in this study is 76.8% and solubility of chitosan solution in water is about 50mg/ml. Furthermore, chitosan has potent superoxide scavenging effect and the IC50 value is 0.04mg/ml. In 96- well plate assay, Staphylococcus aureus and Salmonella enterica subsp. are very sensitive to chitosan bactericidal activity, minimum inhibitory concentration reached by 50% (MIC50) is 0.05mg/ml. Chitosan MIC50 on Escherichia coli, Pseudomonas aeruginosa, and fungus Candida albicans is 0.5mg/ml. Chitosan has no bactericidal activity on Streptococcus faecalis even at 5mg/ml concentration. In test tube antimicrobial assays, chitosan MIC value on Salmonella enterica subsp. and Pseudomonas aeruginosa is 0.5mg/ml. Chitosan MIC value on Escherichia coli, Staphylococcus aureus, and Candida albicans is 1mg/ ml. Consistent with the result in 96-well plate assay, chitosan showed the least growth inhibitory effect on Streptococcus faecalis and the MIC value is 5mg/ml. The results indicate that high molecule water soluble chitosan exhibits as a potential potent antimicrobial product on cosmetics and food industries.

並列關鍵字

chitosan deacetylation MIC antimicrobial

參考文獻


Anchisi, C., Meloni, M. C., & Maccioni, A. M. (2006). Chitosan beads loaded with essential oils in cosmetic formulations. J Cosmet Sci, 57 (3), 205-214.
Calamari, S. E., Bojanich, M. A., Barembaum, S. R., Berdicevski, N., & Azcurra, A. I. (2011). Antifungal and post-antifungal effects of chlorhexidine, fluconazole, chitosan and its combinations on Candida albicans. Med Oral Patol Oral Cir Bucal, 16 (1), e23-28.
Chen, K. Y., Liao, W. J., Kuo, S. M., Tsai, F. J., Chen, Y. S., Huang, C. Y., & Yao, C. H. (2009). Asymmetric chitosan membrane containing collagen I nanospheres for skin tissue engineering. Biomacromolecules, 10 (6), 1642-1649.
Chen, T., Embree, H. D., Wu, L. Q., & Payne, G. F. (2002). In vitro protein-polysaccharide conjugation: tyrosinase-catalyzed conjugation of gelatin and chitosan. Biopolymers, 64 (6), 292-302.
Cho, E. J., Rahman, M. A., Kim, S. W., Baek, Y. M., Hwang, H. J., Oh, J. Y., Hwang, H. S., Lee, S. H., & Yun, J. W. (2008). Chitosan oligosaccharides inhibit adipogenesis in 3T3-L1 adipocytes. J Microbiol Biotechnol, 18(1), 80-87.

被引用紀錄


徐俊國(2014)。奈米金銀及甲殼素活性碳之濾網吸附動力模式〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-0708201416515400
黃筠茹(2017)。骨植體表面功能修飾性質之研究〔碩士論文,中山醫學大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0003-1508201711340400

延伸閱讀