透過您的圖書館登入
IP:18.216.121.55
  • 期刊
  • OpenAccess

Atrial Electrophysiological Remodeling and Fibrillation in Heart Failure

摘要


Heart failure (HF) causes complex, chronic changes in atrial structure and function, which can cause substantial electrophysiological remodeling and predispose the individual to atrial fibrillation (AF). Pharmacological treatments for preventing AF in patients with HF are limited. Improved understanding of the atrial electrical and ionic/molecular mechanisms that promote AF in these patients could lead to the identification of novel therapeutic targets. Animal models of HF have identified numerous changes in atrial ion currents, intracellular calcium handling, action potential waveform and conduction, as well as expression and signaling of associated proteins. These studies have shown that the pattern of electrophysiological remodeling likely depends on the duration of HF, the underlying cardiac pathology, and the species studied. In atrial myocytes and tissues obtained from patients with HF or left ventricular systolic dysfunction, the data on changes in ion currents and action potentials are largely equivocal, probably owing mainly to difficulties in controlling for the confounding influences of multiple variables, such as patient's age, sex, disease history, and drug treatments, as well as the technical challenges in obtaining such data. In this review, we provide a summary and comparison of the main animal and human electrophysiological studies to date, with the aim of highlighting the consistencies in some of the remodeling patterns, as well as identifying areas of contention and gaps in the knowledge, which warrant further investigation.

延伸閱讀