透過您的圖書館登入
IP:3.139.62.103
  • 期刊

視覺導引路徑生成應用於機器人超音波切割單元

Vision Guided Path Generator Application in Robotic Ultrasonic Cutting Cell

摘要


隨著環保意識抬頭導致汽車與自行車的相關零組件往輕量化的方向發展,促進了複合材料市場的成長。這些零組件在熱壓成型後,仍需依賴人工修邊與去除餘料,再加上產品少量多樣化的需求,品質管理難,造成無法大量生產。因此導入機器人與超音波切割設備將可解決人力問題。超音波切割設備以超高頻率的振動讓刀具在接觸工件時產生細微剝落移除材料,可切割的材料也更加多元。本文介紹的機器人超音波切割單元將以導入視覺來進行刀具的六維工具中心點(Tool Center Point, TCP)校正,複合材料在高溫高壓製程下工件與原始的電腦輔助設計(CAD)檔案差異性大,因此使用CAD-Free視覺導引技術來紀錄實際工件的切割路徑點,再以樣條曲線(Spline Curve)插補生成完整的切割路徑,讓產線可導入自動化技術解決工件少量多樣化與產線缺工的需求。

並列摘要


The rise of environmental awareness has led to the development of light-weight components for automobiles and bicycles. This has promoted the growth of composite material market. After hot press molding, composite material components still need manual trimming and removal of remaining materials. The small-volume large-variety manufacturing characteristic made it difficult to assure product quality and produce in mass quantity. The use of robotic ultrasonic cutting cell can therefore solve the problem of insufficient labor. The robot cell for ultrasonic cutting described in this article uses vision to perform 6-dimensional (Tool Center Point, TCP) calibration of the ultrasonic blade attached to a robot. Because the shape of a composite material workpiece is different from its original CAD file after going through high-temperature and high pressure processes. A CADfree vision guided approach is then adopted to track part of an actual cutting path and then to apply spline curve interpolation to generate a complete cutting path. This approach is found to be able to accommodate the shape variation of composite material workpieces effectively.

延伸閱讀