透過您的圖書館登入
IP:3.141.31.240
  • 學位論文

適用於生醫應用之生物訊號擷取單晶前端電路

Monolithic Bio-signal Acquisition Frontend Circuits for Biomedical Applications

指導教授 : 呂學士

摘要


於生物醫學應用與研究中,生物訊息的量化和分析是最為重要的。現代電子生物量測,一般是將生物訊息轉換為電訊號來進行量化與分析,然而,於此訊號轉換過程會受生物體所在環境的影響,使量測備受挑戰。近年來,拜科技進步之賜,大量的生物感測器和感應器整合到固態電路中,實現了CMOS生物醫學的SoC化,使生物醫學量測可以更微小與更低成本的方式進行。於此間,感測元件與電路系統間的介面電路設計扮演一個極重要的關鍵角色,因為它關係到是否能將生物訊號有效的讀取,甚而擴大感測範圍和靈敏度。本篇論文,提出了兩種適用於不同應用的單晶片CMOS生物訊號感測系統:一類適用於生物分子(Biomolecules)的訊息感測,另一種是主要用於生物電(Bio-potential)的訊號擷取。 首先,本文提出一個可重組式的感測器讀取介面電路,將各種感測器與感應器的信號擷取並傳至微控制器。該讀取電路具有相當高的可適性,可整合讀取諸如: 電容,電阻,電壓和電流等型態的感測器。並搭配可程式放大器來提高信號辨識能力,並擴大量測範圍。另外,本前端讀取電路採用偏移消除與非線性補償技術,使系統的感測能力更為靈敏。本可重組式感測器讀取介面電路實現於TSMC 0.35μm 2P4M的製程技術下,面積為1.6×0.9mm2,操作於1.8V電源下,功耗僅為2.57 μW。 其次,本文提出一個四通道低功率低雜訊之神經腦電圖監測系統。該監測系統具有能源擷取的功能與RF無線傳輸的能力。於前端電路的實現上採用低雜訊的設計,並配合雜訊消除技術,使讀取電路感應更加靈敏。另外,此系統更支援溼電極與非接觸式電極的量測。本神經腦電圖監測系統實現於 TSMC 0.18μm 1P6M的製程技術下,面積為2.87×2.37 mm2。其中前端四通道讀取電路操作於1V電源下,功耗僅為14μW。

並列摘要


Quantification and analysis of biological processes are of utmost importance for biomedical applications and investigations. However, it is challenging to convert the biological information into an electronic signal due to the difficulties of connecting an electronic device into a biological environment. In recent years, a great number of biosensors and transducers has been integrated with solid-state circuits, which makes realization of CMOS biomedical SoC possible, leading to miniature and low cost biomedical systems. The transducer interface circuitry plays a main role in such systems, extracting useful data from a variety of device types that can vary widely in range and sensitivity. In this thesis, two different applications within monolithic CMOS technology for bio-signals acquisition from sensors and transducers are presented: one is focusing on bio-signals converted from biosensors; the other is mainly for bio-potential signals acquisition. To begin with, a reconfigurable sensor interface circuit that links to a variety of sensors and actuators to a microsystem controller is reported. The adaptive readout circuitry supports high-resolution signal acquisition from capacitive, resistive, voltage and current mode sensors with programmable control of gain and offset to match sensor range and sensitivity. The readout circuit accommodates offset cancellation technique and nonlinearity compensation. A 1.6 x 0.9 mm2 sensor interface circuitry is fabricated in TSMC 0.35μm 2P4M process and dissipates only 2.57μW power under 1.8V supply voltage. Next, a low power, low noise 4-channel EEG neural recording system is reported. The system fully integrates the analog and digital blocks with an energy harvest system and a RF communication system. The frontend circuitry performs a low noise character with interface noise rejection and devises noise elimination. Dual mode is available for bio-potential signals acquisition from Ag/AgCl electrodes and non-contact electrodes, respectively. A 2.87 x 2.37 mm2 EEG neural recording system is fabricated in TSMC 0.18um 1P6M process. The 4 frontend channels consume only 14 μW power under 1V supply voltage.

參考文獻


[1] Q. Huang and M. Oberle, “A 0.5-mW passive telemetry IC for biomedical applications,” IEEE J. Solid-State Circuits, vol. 33, pp. 937-946, July 1998.
[2] M. Steyaert and W. Sansen, “Low-power monolithic signal-conditioning system”,IEEE J.Solid-state Circuits,” vol.25, pp.609-612, Apr. 1990.
[3] W. Y. Chung et al., “Modular-based design and implementation of a programmable demand pacemaker,” in Proc. 17th Annual Int. Conf. IEEE/EMBS, Montreal, QC, Canada, 1995.
[4] K-I Chen, Y-T Chen, et al, "Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation," Nano Today, vol. 6, 131—154, 2011.
[6] Y-M Chi, Gert C-, et cl, "Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review," REVIEWS IN BIOMEDICAL ENGINEERING, VOL. 3, 2010.

延伸閱讀