透過您的圖書館登入
IP:3.149.255.145
  • 學位論文

陣列式壓電能量擷取於同步電荷提取電路架構下之實驗研究

The Experimental Study of an Array of Piezoelectric Energy Oscillators Attached to the Synchronized Electric Charge Extraction Interface Circuit

指導教授 : 舒貽忠

摘要


本論文旨在探討壓電材料性質屬中弱力電耦合強度下,陣列式壓電能量擷取系統搭配同步電荷提取電路(Synchronized Electric Charge Extraction circuit, SECE)後的成效,以實驗驗證及展示結果,並與陣列式壓電能量擷取系統搭配標準電路(Standard circuit, STD)作比較,以及陣列式與非陣列式系統皆搭配同步電荷提取電路之差異性。我們首先以理論假設以及模擬分析得知此模型的適用範圍,並發現陣列式搭配SECE電路之擷取功率較標準電路與單一振子的架構皆有明顯提升,且頻寬亦有效地增加,此外,將不需考慮阻抗匹配的問題。緊接著經由實驗來分析系統的力學行為與電路特性,我們使用了四根中力電耦合強度之壓電振子材料作為陣列式系統,並搭配兩種不同電路(SECE與STD),最後實驗結果顯示,與理論所預測的趨勢相符,而隨著負載阻抗的改變,搭配SECE系統之擷取功率相較於標準電路,明顯變化較小,且不論是頻寬、平均功率與最大輸出功率,皆屬陣列式壓電系統搭配同步電荷提取電路有較優良成效。

並列摘要


The dissertation has developed an experimental setup for studying energy harvesting extracted from an array of piezoelectric oscillators attached to an SECE (synchronized electric charge extraction) interface circuit. The proposed device consists of 4 piezoelectric oscillators connected in parallel, in series or in mixed arrangements. Each of them is chosen to be in the range of middle of electromechanical coupling since harvested power based on the SECE technique is higher than that based on the standard interface circuit within this range. The experimental results agree quite well with the theoretical predictions. They confirm the superiority of the array based on the SECE circuit over the standard circuit. In addition, the load-independent property is observed to be retained in the array system. Finally, the overall bandwidth of an SECE array is also improved in comparison with that attached to the standard circuit.

參考文獻


[1] S. Roundy, D. Steingart, L. Frechette, P. Wright and J. Rabaey. Power source for wireless sensor networks.Lecture Notes in Computer Science, 2920:1-17, 2004.
[2] F. Akhtar and M. H. Rehmani. Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review. Renewable and Sustainable Energy Reviews, 45:769-784, 2015.
[3] S. P. Beeby, M. J. Tudor and N. M. White. Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 17:R175-R195, 2006.
[4] R. J. M. Vullers, R. V. Schaijk, I. Doms, C. V. Hoof and R. Mertens. Micropower energy harvesting. Solid-State Electronics, 53:684-693, 2009.
[5] S. Cheng, N. Wang and D. P. Arnold. Modeling of magnetic vibrational energy harvesters using equivalent circuit representations. Journal of Micromechanics and Microengineering, 17:2328-2335, 2007.

延伸閱讀