透過您的圖書館登入
IP:3.135.207.129
  • 學位論文

小面積無放大器之數位控制鋰電池充電器

An Area-Efficient Amplifier-Less Digitally-Controlled Li-Ion Battery Charger

指導教授 : 林宗賢
本文將於2027/06/02開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


鋰電池具備了高能量密度、高循環壽命、高電壓、以及不具記憶效應,因此在攜帶式裝置上,鋰電池是最好的選擇。然而,鋰電池的安全性相當重要,過度充電會損毀鋰電池之物理結構,甚至會導致爆炸。本論文實現兩種不同架構之鋰電池充電器,並提供定電流充電及定電壓充電之功能。 第一個作品為一個以類比低壓降穩壓器為基礎的鋰電池充電器。其具有簡單的電路架構及達到很小的電流漣漪,並且利用二極體形式的NMOS確保定電流和定電壓充電模式轉換時之穩定度。本作品以台積電0.35μm CMOS製程實現,輸入電源為5 V,最後輸出電壓穩在4.2 V,定電流充電之電流為600 mA而晶片面積為1.94 mm^(2)。 第二個作品提出全新數位控制架構,實現一個小面積無放大器之數位控制鋰電池充電器。由於使用數位控制技巧,此充電器省去所有類比電路,並減少高功率電晶體的大小,由此達到小面積且設計簡單化的效果。此外,數位控制之架構也讓此作品擁有更好的製程擴展性。此設計以台積電0.35μm CMOS製程實現,輸入電源為5 V,最後輸出電壓穩在4.2 V,定電流充電電流為600 mA而晶片面積僅0.768 mm^(2)。

並列摘要


Lithium-ion (Li-Ion) batteries have high energy density, high cycle life, and no memory effect. Therefore, Li-Ion batteries are the most suitable battery for portable devices. However, the safety of Li-Ion battery is very important. Over discharging and over charging may damage the physical structure of Li-Ion batteries, resulting in reduced battery life or even explosion. In this thesis, two compact Li-Ion battery chargers are proposed with different topologies, and provide essential charging operations including constant-current (CC) and constant-voltage (CV) modes. The first work is an analog LDO-based Li-Ion battery charger. This work features a simple circuit structure and achieves low current ripple. A diode-connected NMOS is used to ensure the stability during the transition from the CC to CV modes. This work is fabricated in TSMC 0.35-µm CMOS process with a 5-V power supply. The output voltage is 4.2 V, and the current in the CC mode is 600 mA with an area of 1.94 mm^(2). In the second work, an area-efficient, amplifier-less Li-Ion battery charger with a novel digitally-controlled architecture is proposed. Owing to the digitally-controlled technique, the proposed charger eliminates all analog circuits and reduces the size of the power transistor. Hence, the proposed charger features a simple circuit structure and a small chip area. Additionally, the nature of digital control suggests that the proposed charger has better process scalability. This work is implemented in the TSMC 0.35-µm CMOS process with a 5-V power supply. The output voltage is 4.2 V, and the charging current in the CC mode is 600 mA with an area of only 0.768 mm^(2).

參考文獻


[4] M. Chen and G. A. Rincón-Mora, “Accurate, compact, and power-efficient Li-Ion battery charger circuit,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, pp. 1180-1184, Nov. 2006.
[5] C.-H. Lin, H.-W. Huang, and K.-H. Chen, “Built-in resistance compensation technique for fast charging Li-Ion battery charger,” IEEE Custom Integrated Circuits Conference, pp. 33-36, Sep. 2008.
[6] C.-H. Lin, C.-Y. Hsieh, and K.-H. Chen, “A Li-ion battery charger with smooth control circuit and built-in resistance compensator for achieving stable and fast charging,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, pp. 506-517, Feb. 2010.
[7] S.-H. Yang, J.-W. Liu, Y.-H. Wu, D.-S. Wang, and C.-C. Wang, "A high voltage battery charger with smooth charge mode transition in BCD process", IEEE International Symposium of Circuits and Systems, pp. 813-816, May 2011.
[8] S.-H. Yang, J. Liu, and C. Wang, “A single-chip 60-V bulk charger for series Li-Ion batteries with smooth charge-mode transition,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, pp.1588-1597, Jul. 2012.

延伸閱讀