透過您的圖書館登入
IP:18.222.119.148
  • 學位論文

新型三芳香胺功能性高分子材料之設計與合成及其光電元件之應用

Design and Synthesis of Novel Triarylamine-Based Functional Polymeric Materials for Optoelectronic Applications

指導教授 : 劉貴生

摘要


本論文包含六個章節,第一章為三芳香胺高分子材料之總體緒論。第二章描述製備三種螢光聚醯亞胺經由三芳香胺二酸酐與脂肪族二胺以一步法合成。其在薄膜及奈米纖維型態時的最高的量子效率分別為32%和35%。此外,為了探討此材料的電子躍遷行為,也合成了相對應的模型化合物並與量子理論計算結果進行比較。第三章合成了四個系列三芳香胺發光團分子,包含四種不同的主要官能基(二醯亞胺、四羧酸、二酸酐及三芳香胺)及四種不同的取代基(-H、-Br、-CHO和-CN),並合成相關的聚醯亞胺經由三苯胺二酸酐單體及市售的二胺單體。在溶劑中,導入拉電子基團如醛基和氰基可提升其發光效率經由定域激發態和電荷轉移激發態的混成激發態。然而,在聚集態時,具有強拉電子的取代基會產生分子間作用力造成能量轉移使發光效率下降。第四章描述經由氧化偶合聚合反應合成了具電致變色及光致發光特性之聚氰基三苯胺CN-PTPA,並製作電致螢光變色元件。此原件展現穩定性測試高於9000秒,由發光態切換至暗態僅需0.4秒所,發光態與暗態的對比高達242。此外,於電解液中加入庚基紫精做為電荷儲存層,不但可降低原件的氧化電位,且可降低從氧化態回到中性態的時間以提升原件的特性。第五章描述以氧化偶合聚合反應合成一系列具三苯胺高分子,分別具有不同的拉電子取代基(氰基、二氰基乙烯、三氰基乙烯及硝基)。我們可經由改變不同的拉電子性取代基來調整電阻式記憶體元件的特性。第六章為結論。 本論文探討與比較三芳香胺功能性高分子之基本特性、光致發光、電化學、電致螢光變色及電阻式記憶體元件特性。由於三芳香胺具有良好的成膜性、熱穩定性、電性、電化學及光物理特性,除了本論文探討的應用外,於其他先進光電元件亦有應用的潛力。

並列摘要


This study has been separated into six chapters. Chapter 1 is general introduction of triarylamine-based polymeric materials for fluorescent, electrofluorochromic and resistive memory devices. In Chapter 2, three novel high fluorescent polyimides (PIs) were readily synthesized, which the photoluminescence (PL) intensity of the solid film and the nanofiber fabricated by solution casting and electrospinning methods revealed high quantum yields of up to 32% and 35%, respectively. Furthermore, in order to investigate the fluorescent transition mechanisms of the PIs, a series of model compounds corresponding to the repeat units of PIs were also synthesized, and density functional theory calculation results were also used to support the deduction. In Chapter 3, we prepared four series of triphenylamine(TPA)-based luminogens with various functional groups (diphthalimide, tetracarboxylic acid, diphthalic anhydride, and simple TPA) and substituted groups (-H, -Br, -CHO, and -CN), and corresponding fluorescent polyimides (PIs) from triarylamine-based dianhydride monomers with various aromatic and aliphatic diamine monomers were also synthesized. In the solution state, the introduction of strong capability of electron acceptor such as formyl and cyano group in the luminogens could induce high fluorescence due to hybridized local and charge transfer transition. However, aggregated molecules containing pendant electron-accepting group in solid state revealed quenching fluorescence behavior due to intermolecular interaction and energy transfers. In Chapter 4, novel electrochromism (EC) and photoluminescence (PL)-active poly(4-cyanotriphenylamine) (CN-PTPA) was prepared by oxidative coupling polymerization from 4-cyanotriphenylamine (CN-TPA) using FeCl3 as an oxidant. The EFC devices of CN-PTPA exhibited excellent reversibility over 9000 sec, rapid response time less than 0.4 sec over the oxidation process, and the highest PL contrast ratio (Ioff/Ion) of 242 between fluorescent neutral state and non-fluorescent oxidized state. In addition, by introducing Heptyl viologen (HV) into the electrolyte as charge balance agent, the obtained EFC devices not only could reduce the oxidative potential but also the recovery time from oxidized to neutral states, thus the performance could be further enhanced than ever. In Chapter 5, a series of poly(triphneylamine)s (CN-PTPA, 2CN-PTPA, 3CN-PTPA, and NO2-PTPA) with pendent acceptors (cyano, dicyanovinyl, tricyanovinyl, and nitro) have been readily synthesized by oxidative coupling polymerization. The tunable memory properties of the ITO/polymer/Al sandwiched memory devices including DRAM, SRAM, and WORM could be achieved by introducing substituent acceptors with different extent of electronic delocalization and electron-withdrawing intensity into the poly(triphenylamine)s. Chapter 6 is conclusions. The basic characterization, photoluminescent, electrochemical, electrofluorochromic and memory behaviors of these triarylamine-based polymers were investigated and compared. Thus, these triarylamine-based polymers could be a candidate for not only light-emitting materials, electrofluorochromic and memory devices but also for widely modern optoelectronic device due to their good thinfilm forming ability, good thermal stability, good electrical, electrochemical and photophyscial properties.

參考文獻


Chapter 1
[1] A. Iwan, D. Sek, Prog. Polym. Sci. 2011, 36, 1277.
[4] a) K. Kim, H. J. Yen, Y. G. Ko, C. W. Chang, W. Kwon, G. S. Liou, M. Ree, Polymer 2012, 53, 4135; b) Y. C. Hu, C. J. Chen, H. J. Yen, K. Y. Lin, J. M. Yeh, W. C. Chen, G. S. Liou, J. Mater. Chem. 2012, 22, 20394; c) H. J. Yen, S. M. Guo, J. M. Yeh, G. S. Liou, J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 3637; d) H. M. Wang, S. H. Hsiao, J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1172; e) S. H. Hsiao, Y. T. Chou, Polymer 2014, 55, 2411; f) S. H. Hsiao, P. C. Chang, H. M. Wang, Y. R. Kung, T. M. Lee, J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 825; g) S. H. Hsiao, H. M. Wang, P. C. Chang, Y. R. Kung, T. M. Lee, J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2925.
[6] a) G. S. Liou, C. W. Chang, H. M. Huang, S. H. Hsiao, J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 2004; b) G. S. Liou, S. H. Hsiao, H. M. Huang, C. W. Chang, Polym. J. 2007, 39, 448; c) G. S. Liou, S. H. Hsiao, H. M. Huang, C. W. Chang, H. J. Yen, J. Polym. Res. 2007, 14, 191.
[12] a) C. Y. Tseng, F. Taufany, S. Nachimuthu, J. C. Jiang, D. J. Liaw, Org. Electron. 2014, 15, 1205; b) C. Y. Chi, M. C. Chen, D. J. Liaw, H. Y. Wu, Y. C. Huang, Y. Tai, ACS Appl. Mater. Interfaces 2014, 6, 12119; c) G. Puckyte, B. Schmaltz, A. Tomkeviciene, M. Degbia, J. V. Grazulevicius, H. Melhem, J. Boucle, F. Tran-Van, J. Power Sources 2013, 233, 86; d) L. M. Huang, C. W. Hu, H. C. Liu, C. Y. Hsu, C. H. Chen, K. C. Ho, Sol. Energy Mater. Sol. Cells 2012, 99, 154; e) J. K. Koh, J. Kim, B. Kim, J. H. Kim, E. Kim, Adv. Mater. 2011, 23, 1641; f) M. C. Chen, D. J. Liaw, W. H. Chen, Y. C. Huang, J. Sharma, Y. Tai, Appl. Phys. Lett. 2011, 99; g) S. Guenes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324; h) P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, D. E. Markov, Adv. Mater. 2007, 19, 1551; i) A. C. Arango, L. R. Johnson, V. N. Bliznyuk, Z. Schlesinger, S. A. Carter, H. H. Horhold, Adv. Mater. 2000, 12, 1689.

延伸閱讀