透過您的圖書館登入
IP:18.117.227.194
  • 學位論文

使用砷化鎵基板之波長1.3微米半導體雷射的動態分析

Dynamic Analysis of 1.3μm GaAs-based Semiconductor Lasers

指導教授 : 毛明華

摘要


在本論文中,我們對使用砷化鎵基板,發光波長在1.3微米的半導體雷射進行測量;測量的樣品包括以氮砷化銦鎵為主動層的第一型量子井雷射910830C,還有以砷化銦/砷化銦鎵量子點為主動層的量子點雷射C1512、C1513以及4-917、4-924。 在室溫底下,我們對樣品進行光功率-電流、電激發光以及動態特性測量。在光功率-電流的測量上,我門觀察到量子點層數會影響臨界電流密度;共振腔長度同樣為1.2毫米,五層量子點樣品4-917臨界電流為每平方公分161.7安培,而十層量子點樣品4-924臨界電流為每平方公分223.1安培。 在動態特性的測量上,波長在1.3微米的量子點雷射,我們所測量到最大的鬆弛震盪頻率為2.67GHz,調變頻寬到達4.1GHz。至於量子井雷射樣品910830C,我們則是切取不同共振腔長度來測量,成功觀察到共振腔長度在0.4毫米時,最大鬆弛震盪頻率到達7.4 GHz。

關鍵字

砷化鎵 1.3微米 半導體 雷射 動態分析

並列摘要


In this paper, 1.3μm GaAs-based semiconductor lasers including of both InGaAsN quantum well lasers and InAs/InGaAs quantum dot lasers have been measrred. At room temperature, light-current, spectral and dynamic characteristics of lasers have been investigated. We observed the threshold current density will be effect with the layers of quantum dot lasers. Threshold current density of 5-stack quantum dot laser with 1.2 mm cavity length was achieved 161.7 A/cm2, and threshold current density of 10-stack quantum dot laser with 1.2 mm cavity length was achieved 223.1 A/cm2. The maximum relaxation oscillation frequency of 1.3 µm InGaAs/GaAs quantum dot lasers achieved is 2.67 GHz, corresponding to a modulation bandwidth of 4.1 GHz. And the maximum relaxation oscillation frequency of 1.3 µm InGaAsN/GaAs quantum well lasers achieved is 7.4 GHz.

並列關鍵字

Dynamic Analysis 1.3μm GaAs-based Semiconductor Lasers

參考文獻


[1] Y. Arakawa, and H. Sakaki, “Multidimensional quantum well laser and temperature-dependence of its threshold current,” Appl. Phys. Lett., vol. 40, pp.939-941, 1982.
[2] M. Kondow, T. Kitatani, and K. Uomi, “GaInNAs:A novel material for long-wavelength semiconductor lasers,” IEEE J. Sel. Topics. Quantum Electron. 3, 719, 1997.
[3] N. Y. Li, C. P. Hains, K. yang, J. Lu, J. Chang, and P. W. Li, “Organometallic vapor phase epitaxy growth and optical characteristics of almost 1.2 µm GaInNAs three-quantum-well laser diodes,” Appl. Phys. Lett. 75, 1051, 1999.
[4] M. Kawaguchi, T. Miyamoto, E. Gouardes, D. Schlenker, T. Kondo, F. Koyama, and K. Iga, “Lasing Characteristics of Low-Threshold GaInNAs Lasers Grown by Metalorganic Chemical vapor Deposition,” Jpn. J. Appl. Phys, Part 2, 40, L744, 2001.
[5] Shunichi Sato, “Low Threshold and High Characteristic Temperature 1.3 µm Range GaInNAs Lasers Grown by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. Part 1, 39, 3403, 2000.

延伸閱讀