透過您的圖書館登入
IP:18.188.168.28
  • 學位論文

溶液製程製作氧化物半導體與導體和電晶體之研究

Studies of Solution-Processed Oxide Semiconductors, Conductors and Thin Film Transistors

指導教授 : 吳忠幟

摘要


透明氧化物半導體由於載子遷移率夠高,足以驅動主動式有機發光二極體(AMOLED)、且環境穩定度相對高、成本較低、穿透率高可增加元件開口率,因此在顯示技術的發展上漸漸受到重視。但是大部分的氧化物薄膜電晶體仍是以真空製程為主,例如磁控濺鍍(RF magnetron sputtering)、脈衝雷射蒸鍍(pulse laser deposition)或熱蒸鍍製程,因此設備成本較高。溶液製程的方法有許多優點,包含製程簡單、成本低廉且很有潛力應用在大面積的面板。以噴印(ink-jet printing)、銘印製程(imprinting)、網版印刷技術(screen printing)等等溶液製程的方式定義圖樣可以避免使用傳統複雜的蝕刻微影技術(photolithagraphy)。 在本論文中,將探討雙主動層的氧化物薄膜電晶體以及高載子遷移率的氧化鋅錫薄膜電晶體,可得載子遷移率高達13-15 cm2/V-s,次臨界斜率可達0.56 V/decade,同時電流開關比大於106。由掃瞄式電子顯微鏡與穿透式電子顯微鏡的影像可知,不同的氧化鋅錫成膜及退火製程會造成薄膜結構不同,進而影響元件特性。 最後一章利用噴印製程噴印出氧化物導體或半導體,用於製作薄膜電晶體的電極層或通道層,雖然元件特性仍有待改進,但初步已獲得可運作之薄膜電晶體。未來進一步調變噴印製程參數和改良墨水品質,應可得到更好的電晶體特性。

並列摘要


Transparent oxide semiconductors (TOSs) for display applications have drawn much attention in recent years due to their high mobility sufficient to drive active matrix organic light emitting diodes (AMOLEDs), good environmental stability, high transparency in the visible range for high aperture ratio, etc. However, most oxide-semiconductor-based TFTs reported to date were fabricated by vacuum deposition techniques, such as magnetron sputtering deposition, pulsed laser deposition (PLD), and thermal evaporation, and thus are rather high cost. Solution processes offer many advantages, such as simplicity, low cost, large area fabrication. Moreover, solution processed deposition methods such as screen printing, imprinting, and ink-jet printing, etc. offer the possibility of direct patterning of thin films which could replace the traditional photolithographic technique. In this thesis, oxide thin film transistors (OTFTs) with double channel layers and high performance zinc tin oxide (ZTO) TFTs were fabricated by the simple and low-cost solution process. Fabricated TFTs show a high mobility up to 13-15 cm2/V-s, a subthreshold slope down to 0.56 V/decade, and a on-off ratio of greater than 106. SEM and TEM images showed that different morphologies resulted from different annealing processes of oxide films, affecting the TFT performances. In addition, we also deposited oxide conductors or semiconductors by the ink-jet printing process to fabricate the source/drain or channel layer for OTFTs. Workable TFTs had been obtained. Performances of TFTs may be further improved by further studying the printing and ink conditions.

參考文獻


2.C. A. Mead, “Shottky Barrier Gate Field-Effect Transistor,” Proc. IEEE 54, 307 (1966)
3.P. K. Weimer, “The TFT—A New Thin-Film Transistor,” Proc. IEEE 50, 1462 (1962).
4.F. V. Shallcross, “Cadmium Selenide Thin-Film Transistors,” Proc. IEEE 51, 851 (1963).
5.P. K. Weimer, “A p-Type Tellurium Thin-Film Transistor,” Proc. IEEE 52, 608 (1964).
6.P. G. LeComber, W. E. Spear, and A. Ghaith, “Amorphous Silicon Field-Effect Device and Possible Application,” Electron. Lett. 15, 179 (1979)

延伸閱讀