透過您的圖書館登入
IP:18.118.12.222
  • 學位論文

結合微電漿產生裝置於氧化鋅奈米柱氣體感測器之應用及其做為自製多點式光譜儀開發測試平台

Application of ZnO Nanorods Gas Sensor and Test Platform of Handmade Multipoint Spectrometer with an Integrated Microplasma Generation Device

指導教授 : 徐振哲

摘要


電漿為高電場作用下之產物,由一帶電且高反應性之氣體所組成,而微電漿則為其中一尺度小於釐米之電漿系統,其有可在常壓下穩定產生電漿之特性,利用其微小的特性即可對材料進行局部之處理,在材料處理的應用上有很大的幫助。本實驗將微電漿裝置結合半導體氣體感測器進行乙醇氣體檢測,微電漿裝置由雙面銅箔基板所組成,利用碳粉轉印方式製作出含有電極之微電漿產生裝置,並以水熱法將氧化鋅奈米線生長於微電漿裝置電極上,當產生電漿時,氧化鋅奈米線可進行現地處理,經微電漿處理後之氧化鋅奈米線即可進行乙醇氣體感測,當乙醇通入氣體感測器時,氧化鋅奈米線電阻將隨著濃度而發生變化,此氣體感測器可偵測28至20000ppm之乙醇氣體,且其檢測時間通常只需數秒並可進行重複氣體偵測,另外,作為感測材料之氧化鋅奈米線之生長情形以XRD與SEM進行觀測與晶格結構分析。 電漿之放光行為常於空間與時間上有不同變化,因此本實驗為自製一樹莓派光譜儀以觀測空間上之電漿放光行為,樹莓派光譜儀由狹縫、衍射光柵與樹莓派相機(CCD)所組成,所形成之光譜儀經過最適化之設計,以銅箔基板製作微電漿裝置做為檢測光譜儀能力之測式平台,將乙醇氣體以非穩態方式擴散進入微電漿系統,所產生之微電漿因氣氛變化而產生不同種類放光,並使用樹莓派光譜儀對電漿放光進行連續拍攝,所得到之放光照片經影像處理後可清楚顯示乙醇濃度隨空間與時間上之變化,則表示此自製樹莓派光譜儀有偵測空間上不同放光之能力,在未來若能利用此自製樹莓派光譜儀收取其他電漿系統之放光,則可得到電漿放光於空間及時間之高光譜影像。

並列摘要


Plasma ignited by high electric field is composed of reactive and charged gas. And microplasma is one of plasma system which one dimension is smaller than 1 mm. microplasma system has numerous advantages such as stable plasma performance and small volume system for material local treatment. In this work, we develop the microplasma generation device integrated with the ZnO nanowires gas sensor for detecting the ethanol gas. Microplasma generation is fabricated with electrode pattern by double-site copper substrate using toner transfer method. Hydrothermal method is used to grow ZnO nanowires on the electrode of microplasma generation device. When microplasma ignited, ZnO nanowires can be treated on-site. After ZnO nanowires microplasma treatment, the sensor has the capability of ethanol sensing. While ethanol introduced to the sensing system, the resistance of ZnO nanowires would change with the ethanol concentration. The sensor is capable to detect a wide range of ethanol vapor, from 28 to 20000 ppm. In addition, the sensor shows the rapid response and excellent recyclibility after repetitatively testing for over 30 cycles. Furthermore, ZnO nanowires as sensing materials would be observed by XRD and SEM for crystallization analysis. The performance of plasma would change spatially and temporally. In this work, we design a self-made raspberry pi spectrometer to observe plasma optical emission performance. Raspberry pi spectrometer consists of a slit, a grating and the camera connected with raspberry pi micro-computer. After the optimal design, testing spectrometer capability through the miroplasma generation device. As creating unsteady ethanol vapor diffusion on the microplasma generation device, plasma optical emission is changing with the different concentration of ethanol vapor and detected by the raspberry pi spectrometer. After imaging analysis, unsteady ethanol diffusion could be described by the temporally and spatially spectrum. It shows that raspberry pi spectrometer has the capability of detecting spatially plasma optical emission. In future, we hope that hyperspectral image could be obtained in another plasma system by using raspberry pi spectrometer.

參考文獻


1. X. Liu, S. T. Cheng, H. Liu, S. Hu, D. Q. Zhang, and H. S. Ning, "A Survey on Gas Sensing Technology," Sensors, 12 (7), 9635-9665 (2012).
2. S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutsol, S. Starikovskaia, U. Kortshagen, J. P. Boeuf, T. J. Sommerer, M. J. Kushner, U. Czarnetzki, and N. Mason, "The 2012 Plasma Roadmap," J. Phys. D-Appl. Phys., 45 (25), 37 (2012).
3. K. H. Becker, K. H. Schoenbach, and J. G. Eden, "Microplasmas and applications," J. Phys. D-Appl. Phys., 39 (3), R55-R70 (2006).
4. I. Adamovich, S. D. Baalrud, A. Bogaerts, P. J. Bruggeman, M. Cappelli, V. Colombo, U. Czarnetzki, U. Ebert, J. G. Eden, P. Favia, D. B. Graves, S. Hamaguchi, G. Hieftje, M. Hori, I. D. Kaganovich, U. Kortshagen, M. J. Kushner, N. J. Mason, S. Mazouffre, S. M. Thagard, H. R. Metelmann, A. Mizuno, E. Moreau, A. B. Murphy, B. A. Niemira, G. S. Oehrlein, Z. L. Petrovic, L. C. Pitchford, Y. K. Pu, S. Rauf, O. Sakai, S. Samukawa, S. Starikovskaia, J. Tennyson, K. Terashima, M. M. Turner, M. C. M. van de Sanden, and A. Vardelle, "The 2017 Plasma Roadmap: Low temperature plasma science and technology," J. Phys. D-Appl. Phys., 50 (32), 46 (2017).
5. N. S. J. Braithwaite, "Introduction to gas discharges," Plasma Sources Sci. Technol., 9 (4), 517-527 (2000).

延伸閱讀