由過去的研究得知利用壓電元件應用於質子交換膜燃料電池之陰極端上,能夠提升電池性能與電流生成。壓電式流道質子交換膜燃料電池在吸入過程中陰極端能夠壓縮足夠空氣至觸媒層上,促進觸媒層電化學反應並增加電流輸出,同時也能排出陰極流道內的水氣。本文透過建立一實驗與三維暫態模型來模擬壓電式流道質子交換膜燃料電池,探討陰極開孔率(Open air ratio)與陰極出入口加上漸縮或漸擴閥之影響,並透過實驗進行驗證。開孔率由80.5%降低至47.9%可以提升電流密度17%,因為在陰極腔體中肋條可以有助於電化學反應,減少電子在腔體中游離的阻力,然而開孔率降低至34.7%,與空氣接觸面積不足,電化學反應不佳導致整體電流密度下降。陰極出入口加上漸縮或漸擴閥以一出口一入口(Type A)之電池性能表現最好,在相同的體積變化下,Type A產生的壓差大,能夠吸入較多的空氣及排出水氣。
Previous studies have indicated that a proton exchange membrane fuel cell with a piezoelectric (PZT) device, which can offer better performance and current generation. Piezoelectric proton exchange membrane fuel cell (PZT-PEMFC) may compress more air into catalyst layer and thus may enhance electrochemical reactions, resulting in higher current output. At the same time, produced water vapor can pump out the cathode channel during the compression process. In this study, a transient three-dimensional model is built to simulate. We discuss the performance of PZT-PEMFC with cathode open air ratio and cathode in/outlet with nozzle/diffuser. Cathode open area ratio from 80.5% to 47.9% may increase the current density 17% of PZT-PEMFC. The reason is that the ribs can reduce electron resistance and increase chemical reaction. The cell with open air ratio reduced to 34.7%, resulting higher in-plane electrical resistance and lower ionic conductivity of the membrane. The performance of cathode in/outlet with nozzle/diffuser (Type A) is better. In the same differential change of volume, Type A can suck in more oxygen and pump out water vapor.