透過您的圖書館登入
IP:3.144.139.201
  • 學位論文

運用微乳液系統進行有機色料微粒之製備與分散研究

Crystallization and Dispersion of Micronized Organic Colorants from Microemulsions

指導教授 : 陳立仁

摘要


有機色料是傳統工業上,產品調色、塗層等製作程序中不可或缺的原料,其中包含可溶性染料與微細顏料兩類。縮小色料顆粒尺寸,將有助於提高穩定性,同時增加色彩強度、對比及穿透度。本研究成功利用(逆)微乳液與反溶劑法,完成Red 60染料與RGB顏料之微粒化及分散製備。 Disperse Red 60實驗結果,在水/苯醇/十二烷基硫酸鈉 (water / Benzyl alcohol / SDS=92.2/8.2/15 wt%)之微乳液系統,10℃持溫30分鐘得到棒狀產物,大小約3.5*1 (=長*寬) ~5*1μm;而二甲基亞碸/環己烷/二辛基磺基丁二酸鈉 (DMSO / Cyclohexane / AOT=2/28/10 wt%)之逆微乳液系統中,10℃持溫5分鐘產物為2*0.6~5*1.3μm。與原始染料(80*15-200*30 μm)相比,微粒化效果顯著。以逆微乳液產物進行UV-可見光譜實驗,在波長650nm處,穿透率可達98.8%。此外,當增加微乳液中界面活性劑濃度,再結晶粒子尺寸會略為縮減,形成較均勻之棒狀。在溶劑擴散法中,改變三相組成為water / Benzyl alcohol / SDS=10/10.5/5 (wt%),不同溶劑添加速率下再結晶結果為10*6~30*10μm (50g/35mins)、15*2~40*4μm (100g/35mins)。 顏料Pigment Red 177經逆微乳液系統(DMSO / AOT / Heptane)分散後,顆粒聚集由269.7nm改善為201.0nm,穿透率則提高2.43倍。 製備四種不同溫度(25℃、40℃、60℃、80℃)之逆微乳液(DMSO / AOT / Cyclohexane、DMSO / AOT / Heptane),比較Pigment Green 36在其中的分散情形,我們發現粒子聚集現象會隨操作溫度提高而更為明顯。25℃操作溫度下,擺放第0、1、3、6天之粒徑分布如下:原始顏料-297.2、282.5、316.7、457.9(nm);Heptane-214.7、210.9、234.4、263.1(nm);Cyclohexane-261.6、281.5、279.2、296.4(nm)。本實驗之逆微乳液系統確實可幫助顏料分散。 在Pigment Blue 15:6的部分,我們嘗試增加逆微乳液系統(DMSO / AOT / Isooctane)中界面活性劑含量,觀察系統組成改變對於顏料分散的影響,其中wt%:2/28/20、2/28/30等兩組產物之穿透行為極為接近,而在波長500nm處穿透率可達98.9%,與原始顏料(80.9%)相比,提高約20.0-20.2%。

並列摘要


Organic colorants are essential for production of paints, inks and toners etc. The reduction of particle size would improve the stability, color strength, contrast, and transmittance. In this study, we apply two microemulsion systems (o/w、w/o) incorporated with temperature changing process and solvent diffusion process to micronize and disperse four colorants: Disperse Red 60、Pigment Red 177、Pigment Green 36、Pigment Blue 15:6. Based on the scanning electron microscope (SEM) results, the sizes of disperse red 60 were dramatically reduced to 3.5*1(length*width)~5*1μm and 2*0.6~5*1.3μm by temperature changing process in water / Benzyl alcohol / SDS and DMSO / Cyclohexane / AOT system respectively, which the size of the original was about 80*15-200*30μm. However, the crystal morphology remained rod-like. The transmittance profiles refered that re-crystallized particles gained remarkably transmittance enhancement compared to that of the suppplied one. In solvent diffusion process, components of three phases were changed to water / Benzyl alcohol / SDS=10/10.5/5 (wt%). Sizes of particles tended to be larger from slow adding rate:10*6~30*10μm (50g/35mins)、15*2~40*4μm (100g/35mins)。 Partice sizes of pigment red 177 were reduced from 269.7nm to 201nm after processing with DMSO / AOT / Heptane microemulsion. For pigment green 36 in w/o microemulsions at four different temperatures (25℃、40℃、60℃、80℃), it was found that particles tended to aggregate as temperature increased. The results at 25℃ were listed below. Changes of particle sizes after 0、1、3、6 days of dispersion for each system are DMSO / AOT / Heptane:214.7、210.9、234.4、263.1(nm) and DMSO / AOT / Cyclohexane:261.6、281.5、279.2、296.4(nm) whereas sizes of the original pigment were 297.2、282.5、316.7、457.9(nm). These results have proved that the microemulsion method could efficiently make pigment particles dispersed. In addition, we tried to disperse pigment particles in microemulsions with variable surfactant concentrations. And similar transmittance results of pigment blue 15:6 were obtained in DMSO / AOT / Isooctane system (wt%:2/28/20、2/28/30). At 500nm wavelength, the transmittance was about 98.9% which is 20.0-20.2% raised from the original one (80.9%).

參考文獻


林雨欣, (2009). “利用微乳液與反溶劑系統研究有機藥物之微粒化並探討系統組成對晶貌的影響”, 台灣大學化學工程學研究所碩士論文
Chattopadhyay, P. and R. B. Gupta, (2001). Production of antibiotic nanoparticles using supercritical CO2 as antisolvent with enhanced mass transfer. Industrial and Engineering Chemistry Research 40, 3530– 3539.
Chen, D. H. and S. H. Wu, (2000). Synthesis of Nickel Nanoparticles in Water-in-Oil Microemulsions. Chemistry of Materials 12, 1354-1360.
Cheng, W. T., C. W. Hsu, and Y. W. Chih, (2004). Dispersion of organic pigments using supercritical carbon dioxide. Journal of Colloid and Interface Science 270, 106–112.
Chevalier, Y. and T. Zemb, (1990). The structure of micelles and microemulsions. Reports on Progress in Physics 53, 279-371.

延伸閱讀