透過您的圖書館登入
IP:3.144.109.5
  • 學位論文

利用脂質體學探討大鼠呼吸暴露奈米氧化鋅微粒的系統性反應

Lipidomic approach to investigate systemic effects of zinc oxide nanoparticles in serum of rats via inhalation

指導教授 : 林靖愉
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


美國科學技術委員會(United States National Research Council)指出,奈米技術將成為下一次工業革命的核心,且先前研究指出,奈米顆粒會引發發炎反應,並與心血管等系統性疾病有關。奈米氧化鋅顆粒是台灣工業界最常使用的材料之一經研究發現會引發肺部發炎反應,健康大鼠在暴露低於目前氧化鋅燻煙之容許濃度標準(PEL, 5 mg/m3)之奈米氧化鋅微粒會誘使健康大鼠的急性肺部發炎與傷害以及系統性發炎反應。因此,探討氧化鋅顆粒與系統性生物反應的關係具有研究價值,而生物性系統反應與代謝物在生物中的調節與變化有關,特別是脂質在生物系統中扮演重要的角色,然而脂質體學研究領域中關於氧化鋅顆粒的研究還十分有限。 本研究的目標是,以脂質體學的研究方法探討氧化鋅顆粒的系統生物反應。本研究所分析的樣本是Spraque-Dawley雄性大鼠透過呼吸暴露高、中、低三種濃度與粒徑分別為250 nm、35 nm之氧化鋅顆粒(6hrs/day)後犧牲取得之大鼠血清。經Folch’s萃取得到脂類代謝物後以超效能液相層析串聯飛行時間質譜儀進行脂質定性分析,經正交偏最小方差判別分析(Orthoganal partial least square discriminant analysis, OPLS-DA) 結果顯示磷脂醯膽鹼類是貢獻暴露組與控制組間差異的主要脂質;使用超效能液相層串聯質譜儀進行半定量與結構鑑定以探討磷脂醯膽鹼類含量在氧化鋅顆粒暴露與控制組差異及可能的氧化鋅顆粒暴露生物指標。35 nm氧化鋅顆粒高、中、低暴露組和各劑量控制組的OPLS-DA結果顯示,雙碳鍊磷脂醯膽鹼類 PC(P-20:5/18:0) (m/z 792.88)在各劑量組間存在正相關劑量效應;250 nm米顆粒高、中、低暴露組和各劑量控制組的OPLS-DA結果顯示雙碳鍊磷脂醯膽鹼類 PC(37:1)有可能作為氧化鋅顆粒暴露的系統性反應生物指標。

並列摘要


Nano-sized zinc oxide (ZnO) was widely applied in industrial, and ZnO material is one of the most important nanotechnology products in Taiwan owing to its wide application. However, there are literatures indicating that nano-size particles may induce inflammation, thrombosis and cardiovascular diseases, or even penetrate into systemic circulation; research has found ZnO nano-particles could induce lung inflammation and systemic inflammation responses in animals. Human studies also demonstrated that inhalation of ZnO particles can cause metal fume fever. So far, there is little research using lipidomic approach to investigate the systemic effects of ZnO particles. To conduct ZnO induced systemic effect, male Spraque-Dawley rats were exposed to high, moderate, or low concentration of either 35 nm or 250 nm ZnO particles via inhalation for 6 hours, and serum samples were collected. After extracted by Folch’s method, serum samples were analyzed by ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-Qtof/MS) for lipids profiling; following ultra- performance liquid chromatography triple quadrupole mass spectrometry ( UPLC-TQMS) for glycerophosphocholine (PC) profiling, structural identification and semi-quantification. According to OPLS-DA from UPLC-Qtof/MS lipid profiling results, we found PCs are major lipid species that can illustrate the effect of ZnO particle exposure. Combining PC profiling, semi-quantification and structural analysis from UPLC-TQMS, PC(P-20:5/18:0) has positive regulation after 35 nm ZnO particle treatment; PC(37:1) was discovered a negative regulation from OPLS-DA of 250 nm ZnO particle treatment. Other PCs modulations between various doses were also observed in either 35 nm or 250 nm groups. In conclusion, this study takes a leading role in conducting ZnO particle exposure using lipidomics research approach that has proved PCs demonstrate dose-response potential biomarkers.

參考文獻


Almaguer C., Fisher, E., & Patton-Vogt, J. (2006). Posttranscriptional regulation of Git1p, the glycerophosphoinositol/glycerophosphocholine transporter of Saccharomyces cerevisiae. Curr Genet, 50(6), 367-375
Bielawski, J., Pierce, J. S., Snider, J., Rembiesa, B., Szulc, Z. M., & Bielawska, A. (2010). Sphingolipid analysis by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Adv Exp Med Biol, 688, 46-59.
Chen, Z., Meng, H., Xing, G., Chen, C., Zhao, Y., Jia, G., . . . Wan, L. (2006). Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett, 163(2), 109-120.
Cheng, M. L., Shiao, M. S., Chiu, D. T., Weng, S. F., Tang, H. Y., & Ho, H. Y. (2011). Biochemical disorders associated with antiproliferative effect of dehydroepiandrosterone in hepatoma cells as revealed by LC-based metabolomics. Biochem Pharmacol, 82(11), 1549-1561.
Cioffi, N., Ditaranto, N., Torsi, L., Picca, R. A., Sabbatini, L., Valentini, A., . . . Zambonin, P. G. (2005). Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Anal Bioanal Chem, 381(3), 607-616.

延伸閱讀