透過您的圖書館登入
IP:3.17.174.156
  • 學位論文

聚己內酯及幾丁聚醣-明膠-聚氧化乙烯雙層電紡奈米纖維膜之製備及其特性探討

Fabrication and Characterization of Polycaprolactone and Chitosan-Gelatin-Poly(ethylene oxide) Bilayer Electrospun Nanofiber Membranes

指導教授 : 謝學真

摘要


奈米纖維的結構類似於細胞外間質(ECM),具有良好的質傳效率,因此在組織工程相關的領域具有高度潛力。幾丁聚醣(C)和明膠(G)擁有高生物相容性和親水性,聚氧化乙烯(P)可以改善電紡纖維的型態,幾丁聚醣-明膠-聚氧化乙烯溶液可被電紡成三成分的C-G-P膜。為了改善纖維膜的機械性質,聚己內酯(PCL)溶液可被電紡成單成分的PCL膜。本研究擬結合上述材料的優點,使用雙針電紡的技術來製備雙層奈米纖維膜(亦即PCL/C-G-P膜),再以戊二醛(GA)蒸氣進行交聯。本研究發現在雙層奈米纖維膜上難以電紡第三層纖維膜,為了製備出多層奈米纖維膜並增強纖維膜之間的黏著強度,本研究使用由明膠和戊二醛混合而成的水膠當作生物黏著劑(bioadhesive)。 本研究以掃瞄式電子顯微鏡(SEM)觀察奈米纖維的結構,而透過機械性質的測定可以分析奈米纖維膜經由不同交聯時間處理後,強度和延展性的變化,除了研究雙針電紡的製程參數之外,本研究也觀察到隨著交聯時間的增加,奈米纖維膜的強度會上升,但延展性會下降。由崩解性實驗可以發現當交聯達到一定程度後,奈米纖維的型態和重量就可以被維持,從以上實驗得知將奈米纖維膜交聯兩小時為最佳製備條件。由接觸角儀可以驗證PCL膜為疏水性膜材而C-G-P膜為親水性膜材,由傅立葉紅外線光譜儀(FT-IR)可以驗證製備出的支架確實為雙層結構。在熱性質的測定中,由熱重示差同步掃描分析儀(TGA)和差式掃描熱量分析(DSC)可以得知膜材的熱性質。在細胞相容性測試方面,纖維母細胞(WS1)和間葉幹細胞(KP-hMSC)分別被培養在雙層奈米纖維膜(PCL/C-G-P膜)的兩側,由實驗結果觀察到不論是疏水的PCL膜還是親水的C-G-P膜皆具有良好的細胞相容性,但細胞培養在C-G-P膜上時具有較快的增殖速率,故應可嘗試將本研究製備出的雙層奈米纖維膜應用於引導骨再生(GBR)手術的屏障膜(barrier membrane),因為疏水的PCL膜可以使不該往骨缺陷處生長的細胞被屏蔽在外面,同時親水的C-G-P膜擁有促進細胞貼附和增殖的功能。

並列摘要


Nanofibers are structurally similar to extracellular matrix (ECM), possessing good mass transfer efficiency, and thus have great potential in the tissue engineering-related applications. Chitosan (C) and gelatin (G) have high biocompatibility and hydrophilicity properties; poly(ethylene oxide) (P) can improve the quality of fibers. A chitosan-gelatin-PEO solution can be fabricated into a three-component C-G-P nanofiber membrane. To improve the mechanical strength of membrane, polycaprolactone (PCL) solution can be fabricated into a one-component PCL nanofiber membrane. The purpose of this research is to develop scaffolds that possess both mechanical strength and biocompatibility, namely PCL/C-G-P bilayer electrospun nanofiber membranes which were prepared by dual-needle electrospinning technique and crosslinked by glutaraldehyde (GA) vapor. It was difficult to add the third layer to the bilayer scaffold. In order to develop mutli-layer electrospun nanofiber scaffolds and increase the bonding strength between layers, gelatin/glutaraldehyde solution was used as a bioadhesive to bond the scaffold. In this study, SEM was used to observe the morphology of the PCL/C-G-P nanofiber membranes. The optimal operating conditions for dual-needle electrospinning such as the process parameters were analyzed and the results of mechanical property test showed that the tensile strength of the PCL/C-G-P nanofiber membranes was increased but the elongation at break was decreased after crosslinking. The results of membrane stability in aqueous solution showed that the morphology ant weight of membranes could be maintained after optimal crosslinking which was 2 hours in GA vapor. The results of water contact angle measurements showed that PCL membranes were hydrophobic and C-G-P membranes were hydrophilic. The bilayer structure of the PCL/C-G-P membranes were verified by FT-IR analysis. The results of TGA and DSC curves showed the thermal properties of membranes. In cytocompatibility tests, fibroblasts (WS1) and mesenchymal stem cells (KP-hMSC) were cultured on the PCL/C-G-P membranes. Both PCL membranes and C-G-P membranes showed excellent cytocompatibility, but cells cultured on C-G-P membranes exhibited higher proliferation rate than on PCL membranes. The PCL/C-G-P bilayer nanofiber membranes could be utilized as barrier membranes for guided bone regeneration (GBR), because the PCL membranes could block the migration of connective tissues due to its hydrophobic property while the C-G-P membranes could promote the attachment and proliferation of cells.

並列關鍵字

electrospinning polycaprolactone chitosan gelatin bilayer bioadhesive

參考文獻


Nerem, R.M. and Sambanis, A., Tissue engineering: from biology to biological substitutes. Tissue Engineering, 1995. 1(1): 3-13.
Sasmazel, H.T., Gumusderelioglu, M., Gurpinar, A. and Onur, M.A., Comparison of cellular proliferation on dense and porous PCL scaffolds. Bio-Medical Materials and Engineering, 2008. 18(3): 119-128.
Angelova, N. and Hunkeler, D., Rationalizing the design of polymeric biomaterials. Trends in Biotechnology, 1999. 17(10): 409-421.
Retzepi, M. and Donos, N., Guide Bone Regeneration: biological principle and therapeutic applications. Clinical Oral Implants Research, 2010. 21(6): 567-576.
Xue, J., He, M., Liang, Y., Crawford, A., Coates, P., Chen, D., Shi, R. and Zhang, L., Fabrication and evaluation of electrospun PCL-gelatin micro-/nanofiber membranes for anti-infective GTR implants. Journal of Materials Chemistry B, 2014. 2(39): 6867-6877.

延伸閱讀