透過您的圖書館登入
IP:3.135.183.1
  • 學位論文

球形膠體粒子的凝膠電泳現象

Gel electrophoresis of Spherical Colloidal Particles

指導教授 : 李克強

摘要


本研究以假性光譜法數值模擬球形膠體粒子的凝膠電泳現象。 存在於非均相高分子凝膠的電泳相當常見,但以往的電泳理論研究,皆著重於均相電解質溶液系統探討,主要原因在於高分子凝膠中的電泳分析相較於電解質溶液系統複雜,過去無法以適當的方式更效描述凝膠施予粒子的摩擦力,本研究克服這項難處,採用『均勻介質模型』描述非均相的高分子凝膠系統:以Brinkman方程式描述非均相多孔系統中的流動行為,並在此物理空間中求解軟物質電動力學方程組;此外,利用空間遮蔽效應描述粒子與高分子凝膠間的固體碰撞作用,最後再將兩種效應以簡單乘積的方式整合,求取真實泳動速度。新模型經由研究測詴,可以精確比對文獻中的凝膠電泳實驗結果。本論文的安排如下:第一章對於凝膠電泳做概要性介紹與點出研究的動機與目的,第二與第三章則清楚說明均勻介質模型下求解凝膠電泳所必頇的電動力學理論分析與研究所採用的數值方法與計算流程。於內容上,我們依據適用系統分為兩個專章深入討論,第四章討論於帶電懸浮膠體粒子的凝膠電泳現象;第五章則討論於平面邊界對於球形膠體粒子凝膠電泳現象的影響。 II 我們發現高分子凝膠貢獻的摩擦將減緩粒子電泳動度。當電解質濃度越稀薄(電雙層越厚),懸浮膠體的密集度為決定電泳動度的主要參數,若粒子密集度越高,電雙層的重疊效應越顯著,使電泳動度低於低電位解析預測值;此外,當電雙層厚度約略等於粒子半徑,極化效應最為明顯,它將抑制電泳動度隨電解質濃度增加的上升趨勢,而該效應強度將隨粒子表面電位增加而增加,隨凝膠濃度增加而降低。另一方面,當粒子靠近於平面邊界,平板將降低粒子電泳動度;當粒子存在於高分子凝膠中,且電雙層厚度大於粒子與平板間距時,粒子泳動度將出現極大值,該現象未曾出現於電解質溶液,由於存在多孔介質,電力與流力摩擦競爭將更為複雜,經研究結果證實,此極大值的出現主要肇因於高分子凝膠抑制電雙層極化效應所致。

並列摘要


Gel-electrophoresis of spherical colloidal particles is investigated theoretically in this thesis. Both the short range steric effect (due to the direct contact friction between the solid obstacles and the migrating particles) and the long range hydrodynamic effect (due to the hydrodynamic force of the gel exerted upon the liquid suspension) are considered with the particle mobility calculated as the product of the predictions from these two approaches separately. Brinkman model is assumed to describe the fluid flow in the polymer gels. A pseudo-spectral method based on Chebyshev polynomials is adopted to solve the resulting general electrokinetic equations. We find, among other things, that the deformation of an ion clouds surrounding the particles due to the convection flow within the polymer gels deters the particle motion significantly, as an induced electric field opposite to the applied electric field is generated, an effect referred to as the polarization effect here. The higher the surface potential of the particle is, the more significant the reduction of mobility due to this polarization effect. Local extrema are observed in the mobility profiles with varying double layer thickness around

參考文獻


[1] D.J. Shaw, Introduction to Colloid and Surface Chemistry, 4 ed., Butterwirth Heinemann, Boston, 1992.
[2] R.J. Hunter, Foundations of Colloid Science, Oxford Science Publications, 1983.
[3] L. Besra, M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Prog. Mater. Sci., 52 (2007) 1-61.
[4] A.L. Dalisa, Electrophoretic Display Technology, IEEE Trans. Electron Devices, 24 (1977) 827-834.
[5] E.H. Jones, Reynolds, D. A., Wood, A. L. and Thomas, D. G., Use of Electrophoresis for Transporting Nano-Iron in Porous Media, Ground Water, (2010).

被引用紀錄


黃郁棻(2017)。圓柱形孔道內球形帶電粒子在高分子溶液中之電泳與電滲透運動〔博士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201700486
房軒(2015)。軟物質系統電動力學現象:擴散泳動暨電荷調節現象探討〔博士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2015.02324
涂敏詣(2013)。聚電解質在凝膠系統中的電動力學現象探討〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2013.02937

延伸閱讀