透過您的圖書館登入
IP:3.141.202.54
  • 學位論文

金屬光柵耦合表面電漿波以增加非晶矽薄膜太陽電池 光吸收之模擬研究

Simulation on Absorption Enhancement of a Thin-Film Amorphous Silicon Solar Cell through Surface Plasmon Coupling with a Metal Grating

指導教授 : 江衍偉
共同指導教授 : 楊志忠

摘要


藉由基於有限元素法之模擬軟體COMSOL Multiphysics,本論文進行具有一維或二維金屬光柵結構的非晶矽薄膜太陽電池對於光吸收之數值研究。太陽電池由三部分所組成,依序是作為表面電極之氧化銦錫透明導電層、非晶矽半導體層以及作為底部電極之金屬銀光柵層。論文中使用AM1.5G之太陽光譜作為光源,改變入射角度與金屬光柵高度以探討其對太陽電池光吸收之影響。以金屬光柵為底部電極之薄膜太陽電池能在表面形成漸變等效折射率之抗反射層,並且根據非晶矽材料特性,吸收較差的紅光能在底部金屬光柵激發表面電漿波。藉由表面電漿波共振及其散射,可提高場強分佈以增加太陽電池的光吸收。此種太陽電池同時具有抗反射效果以及寬頻吸收的特性。經由適當的金屬光柵設計,相較於水平金屬底部電極之太陽電池,本太陽電池之光吸收最高可提升約56%。

並列摘要


By using the commercial software COMSOL Multiphysics which is based on the finite element method (FEM), the absorption effects of the thin-film amorphous silicon solar cell with one-dimensional or two-dimensional metal grating structures are numerically investigated. The solar cell structure consists of three parts: an ITO layer as the top contact, an amorphous silicon layer and a metal Ag grating layer as the back contact. The light source adopted is with the AM1.5G solar spectrum, and different incident angles and grating heights are changed to investigate the influences on the absorption of the solar cell. The thin-film solar cell with metal grating back contact can form the graded-refractive index layer on the surface. Based on the characteristic of the amorphous silicon, the poorly absorbed red light can couple into the surface plasmon mode in the back metal grating contact. The absorption of the solar cell can be enhanced due to the generation of surface wave resonance and scattering. The device combines advantages of both reduced reflection and enhanced absorption over a broad spectral range. The solar cells with the grating structures compared with the reference case of a flat metal surface back contact. The absorption enhancement of the solar cell can reach 56% at best with the appropriate grating design.

參考文獻


1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Materials 9, 205-213 (2010).
2. J. Zhu, Z. Yu, S. Fan, Y. Cui, “Nanostructured photon management for high performance solar cells,” Materials Science and Engineering: R: Reports 70(3-6),330-340 (2010).
3. T. Dittrich, A. Belaidi, and A. Ennaoui, “Concepts of inorganic solid-state nanostructured solar cells,” Sol. Energy Mater. Sol. Cells 95(6), 1527-1536 (2011).
4. B. A. Andersson, “Materials availability for large-scale thin-film photovoltaics,” Prog. Photovolt: Res. Appl. 8, 61–76 (2000).
6. D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).

延伸閱讀