透過您的圖書館登入
IP:18.118.227.69
  • 學位論文

C型肝炎病毒非結構性蛋白質NS3內部截切的分子機制

Molecular mechanisms involved in the internal NS3 cleavage of hepatitis C virus

指導教授 : 張鑫

摘要


C型肝炎病毒帶有一單股正向的RNA基因體,可編碼出一條多蛋白質前驅物並藉由宿主和病毒的蛋白酶切割成具有功能性的蛋白質,其中非結構性蛋白質NS3具有631個胺基酸,擁有serine protease和RNA helicase的功能。先前實驗室已證實,NS4A可作為NS3 protease的輔因子,幫助NS3進行病毒多蛋白質切割以及NS3內部截切,而且此NS3內部截切功能可由不同的NS3分子藉由trans的方式達成。由一系列的NS4A單一點突變的研究指出,NS4A的Ile-25、Val-26、Ile-29這三個胺基酸對於NS3內部截切和細胞轉型能力是重要的。 由於NS3可以trans的方式去切割另一個NS3分子,因此本論文首先藉由SPDB viewer軟體由結構上預測NS3分子間可能會產生交互作用的胺基酸,進行刪除與點突變,分析這些改變對NS3分子間交互作用的影響,也分析它們在內部截切功能上的重要性。由共同免疫沉澱的結果顯示,一個NS3分子的NTPase domain會和另一個NS3分子的RNA binding domain產生交互作用形成複合體;當NTPase domain和RNA binding domain內的胺基酸發生定點突變時,會降低NS3內部截切的效率。另一方面,為瞭解NS3在多蛋白質切割及NS3內部截切兩種proteolytic cleavage作用機制上的差異性,首先藉由NS3的刪除突變分析兩種切割作用所需的NS3片段,結果發現NS3的protease domain NS3(1-181) 雖保有病毒多蛋白質切割的能力,但卻不具有NS3內部截切的功能;然而將片段延伸到擁有ATP-binding domain長度的NS3蛋白質,包含NS3(1-223)、NS3(1-313)、NS3(1-369)、NS3(1-402)、NS3(1-462) 以及全長的NS3,就同時具有多蛋白質切割和NS3內部截切能力,顯示了NS3蛋白質在病毒多蛋白質切割及NS3內部截切的作用機制上的差異性。另外也發現NS4A可以幫助NS3(1-402) 執行NS3內部截切能力,而且和NS3全長一樣,當NS4A的Ile-25、Val-26或Ile-29胺基酸產生突變時則無法進行此內部截切。由細胞聚落形成分析的結果發現,NS3內部截切的自然產物NS3(1-402) 相較於全長的NS3來說,具有較高的細胞轉型能力,而且其蛋白酶活性對於細胞轉型能力是重要的,推測NS3內部截切作用對於細胞癌化有重要的影響。

並列摘要


Hepatitis C virus (HCV) possesses a single-stranded positive-sense RNA genome, the genomic RNA encodes the viral polyprotein precursor that can be further processed by host and the viral proteases to form functional proteins. The nonstructural protein 3 (NS3) has 631 amino acids and possesses serine protease and RNA helicase activities. NS4A is a cofactor of the NS3 protease. Previous study has shown that NS4A can support NS3 in the viral polyprotein processing and internal NS3 cleavage. In addition, the internal NS3 cleavage can occur in trans. Further mutational analysis demonstrated that the Ile-25, Val-26, and Ile-29 residues of the NS4A protein are important for the NS4A-dependent internal NS3 cleavage and the transforming activity of NS3. Since internal NS3 cleavage can occur in trans, amino acid residues participated in the interaction between two NS3 molecules were predicted in this study by using the SPDB viewer software. The analysis revealed a potential interaction between the NTPase domain and the RNA binding domain of the NS3 protein. The interaction was confirmed by co-immunoprecipitation. In addition, NS3 mutants with amino acid substitutions at the predicted interacting residues showed a reduced efficiency of internal NS3 cleavage. Furthermore, in order to understand the mechanisms that differ between the polyprotein processing and internal NS3 cleavage, the minimum length of the NS3 protein required for these two proteolytic cleavage were analyzed. The NS3 protease domain, NS3(1-181), demonstrated a polyprotein processing activity, but failed to cleave NS3 internally. Nevertheless, NS3 proteins NS3(1-223)、NS3(1-313)、NS3(1-369)、NS3(1-402)、NS3(1-462) and the full length NS3 that retain the ATP-binding motif in the helicase domain have both the polyprotein processing and internal NS3 cleavage activities, indicating that the mechanisms of NS3 involved in these two proteolytic cleavages are different. In addition, amino acid substitutions at the I25, V26 and I29 of the NS4A protein abolished the internal cleavage of NS3(1-402) similar to that of the full length NS3. Furthermore, colony formation assay demonstrated a higher transforming activity of the natural product of internal NS3 cleavage, NS3(1-402), than the full length NS3. The serine protease activity of NS3 has a critical role in the degree of colony formation. Taken together, these results indicate that the internal NS3 cleavage plays an important role in the transforming activity.

參考文獻


寇怡衡,2007,非結構性蛋白質NS3和NS4A參與C型肝炎病毒致病之分子機轉。國立臺灣大學醫學院微生物學研究所博士論文。
林育靜,2008,C型肝炎病毒非結構性蛋白質NS3-4A對於宿主細胞之細胞凋亡的調節作用。國立臺灣大學醫學院微生物學研究所碩士論文。
Behrens SE, Tomei L & De Francesco R (1996) Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO J 15, 12-22.
Boulant S, Montserret R, Hope RG, Ratinier M, Targett-Adams P, Lavergne JP, Penin F & McLauchlan J (2006) Structural determinants that target the hepatitis C virus core protein to lipid droplets. J Biol Chem 281, 22236-22247.
Brass V, Berke JM, Montserret R, Blum HE, Penin F & Moradpour D (2008) Structural determinants for membrane association and dynamic organization of the hepatitis C virus NS3-4A complex. Proc Natl Acad Sci U S A 105, 14545-14550.

延伸閱讀