透過您的圖書館登入
IP:3.135.219.166
  • 學位論文

奈米流變液體阻尼器之可行性研究

Feasibility study on a Shear Thickening Nano Fluid Viscous Damper

指導教授 : 張國鎮

摘要


本文主要研究具高流變特性之剪切稠變流體(Shear Thickening Fluid)填充於環間隙油壓缸管之阻尼器特性。由剪切稠變流體製作、流變試驗、阻尼器元件製造及阻尼器實體性能測試皆於本文中說明。 本文首先將基礎二氧化矽奈米顆粒 ( Silica Powder ) 與母體載液 ( Carrier Fruid )進行混合,並製作出具剪切稠變特性之流體。本文所使用之二氧化矽奈米顆粒為Aerosil 200、Aerosil R972及SS5505;母體載液為聚丙烯乙二醇 ( PPG ) 及乙二醇 ( EG )。透過流變儀進行剪切稠變流體流變測試,由試驗結果建立黏滯度 ( η ) 與剪應變率 ( γ ̇ ) 關係。試驗結果得知,剪切稠變流體具有高度非線性行為,隨這剪應變率升高而有黏滯度增高(增稠)再將低(剪稀)的特性。此外,剪切增稠效應之起始剪應變率((γ_c ) ̇)及結束剪應變率((γ_m ) ̇)將控制流體的流變特性。 本文第四章將剪切稠變流體填充於環間隙油壓缸管,隨後進行填充剪切稠變流體之阻尼器實體元件性能測試。試驗結果得知,填充剪切稠變流體阻尼器之非線性行為屬於α值小於1之行為,主要原因是剪切稠變流體產生黏滯度剪切稀化效應。填充剪切稠變流體阻尼器之非線性特性及阻尼力大小將與流體之流變特性有關。 本文最後使用高階流體有限元素軟體ANSYS CFX 13.0 進行環間隙油壓缸管之模擬。將黏滯度與剪應變率關係以離散化數據定義流體特性,再由分析軟體模擬油壓缸管受到反覆運動,達到預測阻尼器之消能行為。現階段數值模擬成果,可初步掌握阻尼力大小,惟遲滯迴圈形狀尚無法獲得較好的結果。主要原因是未考慮液體與固體之邊界條件、液體與固體間的摩擦力、液體可壓縮性及溫度效應。

並列摘要


This paper presents a study on the rheological properties of shear thickening fluids (STF) and the performance of a viscous damper. The blend of shear thickening fluid, the rheological test, damper device fabrication and performance tests are described in this article. This article prepares the STF samples by blending nanoscale fumed silica powder with carried fluid. The silica powder, used in the paper, are Aerosil 200, Aerosil R972 and SS5505; and the carried fluid are polypropylene glycol (PPG), and ethylene glycol (EG). By using a strain-controlled rheometer with a cone and plate tool, both steady and dynamic state experiments were performed and the rheological properties of the STF were observed. Experimental results showed an abrupt increase in complex viscosity between a critical dynamic shear strain rate (γ_c ) ̇ and (γ_m ) ̇ . From the rheological test results, shear thickening fluid is highly non-linear behavior. In addition, the shear strain rate (γ_c ) ̇ and (γ_m ) ̇ will control the rheological properties of the fluid. In chapter 5, a hydraulic steel tube with ring gap was filled with a STF to develop a passive damper device. The STF-filled damper performance test showed the behavior is similar to a non-linear damper which α value is smaller than 1. The non-linear behavior of STF-filled damper is related to the rheological properties of the fluid. Finally, the ANSYS CFX was used to simulate the viscous damper under simple harmonic motion. The results show the prediction of damper force is well. But the shape of the hysteresis loop was not yet effective; the main point is due to boundary conditions, friction and temperature effects different from the actual situation.

參考文獻


1. LEE, D., Taylor, D. P. T., 2001, “VISCOUS DAMPER DEVELOPMENT AND FUTURE TRENDS”, Struct. Design Tall Build. 10, 311–320.
2. 黄镇,” 非线性粘滞阻尼器理论与试验研究”,2007,东南大学博士学位论文,李爱群教师指导。
3. ESDU, “Non-Newtonian Fluids: Guide to classification and characteristics”, Item No. 97034, ESDU International plc, London, December 1997.
4. Constantinou, M. C., Symans, M. D., 1993, “Experimental Study of Seismic Response of Buildings with Supplemental Fluid Dampers”, The Structure Design of Tall Buildings, Vol. 2, 93~132.
5. Constantinou, M. C. , and Symans, M. D. ,1992, “Experimental and Investigation of Seismic Response of Structure with Supplemental Fluid Viscous Dampers”, Publish as Report NCEER-92-0032, by the National Center of Earthquake Engineering Research, State University of New York at Buffalo.

延伸閱讀