透過您的圖書館登入
IP:3.145.97.109
  • 學位論文

利用三維動態螢光攝影量測活體顳顎關節與植體覆蓋式義齒運動之研究

In vivo Measurement of the Kinematics of the Temporomandibular Joints and Implant Overdentures Using 3D Fluoroscopy

指導教授 : 陳韻之
共同指導教授 : 呂東武(Tung-Wu Lu)

摘要


摘要 背景: 下顎運動學在現代牙醫學基礎中一直扮演著十分重要之角色,但是對其之理解多只侷限於顳顎關節髁頭而非整體之運動。近年來利用光電子運動追蹤儀在研究人類下顎運動學的研究發展伴隨著量測記錄下顎運動的技術改良而演進,由傳統單平面,多平面的運動軌跡量測進步到三度空間六個自由度的立體量測。雖然顳顎關節能同時進行旋轉及平移等運動的事實是早被確認的, 然而要將量測結果與下顎骨電腦模型結合分析下顎動作時顳顎關節或骨體的空間位置變化,常需要架設目標框架連結於頭顱、顏面或上下顎牙齒以利於記錄空間位置,目標框架的體積及重量會對下顎自然的生理運動造成干擾,尤其下顎的目標框架常需穿越嘴唇繞過口腔,使得所測的結果客觀性受到質疑。 而另一項研究下顎運動學的動機即在於增進贋復牙科學中活動義齒的製作,希望藉由全口或局部活動義齒支持度與穩定度之提升,以促進較大範圍缺齒之患者,口腔咀嚼功能的重建。然而對於全口或局部活動義齒穩定度之評估一直缺乏一種較為客觀、直接的評估方式。無論從早期對全口活動義齒的固持度如何維持與咬合型態應如何設計之觀點,到近期對植體覆蓋式義齒成功率的評估與描述;除了藉由義齒使用者主觀之問卷評、人工牙根周圍齒槽骨吸收變化之程度外、大多缺乏對活動義齒運動狀態直接、客觀之分析。實際上,要直接於活體中量測活動義齒之運動狀態,來評估是否滿足生理功能之使用,是有臨床研究的難度。 現今,動態螢光立體量測技術已被廣泛運用在人體其他關節系統的運動學的量測與研究;本研究目的針對顳顎關節之特性,希望開發一項單平面動態螢光立體量測技術,將之應用於下顎運動的動作分析研究與植體覆蓋式活動義齒運動狀態之量測,建立一個不須架設目標框架,高精確度的立體量測技術。 材料、方法與結果: 本研究所使用的實驗儀器為牙科錐狀光束電腦斷層掃描系統,以及此系統所含的動態螢光攝影模式。實驗從利用仔豬的頭部標本為試體,取其與成人相近的下顎大小作為體外實驗樣本,進行電腦斷層攝影建立標記之立體模型;隨後進行動態螢光攝影取得測試動作的平面影像進行標記點位置幾何關係之比對,經最佳化運算比對量測結果,用做為量測系統靜態誤差值與精密度之分析。最後,於無任何顳顎關節系統功能障礙之自願受試者進行活體功能性運動之量測,進一步進行靜態與動態誤差值與精密度之評估。 研究結果顯示利用牙科錐狀電腦斷層系統及動態螢光攝影模式進行下顎動作的立體量測,同時利用單平面影像比對之方式不僅有良好的精確度,此一不須架設框架的量測技術更可減少對生理功能性運動之干擾,有利於應用在其他牙醫學的相關研究,如顳顎關節中髁關節頭生物力學之立體動態描述(包括:開閉口、前突與側方運動,以及較複雜之咀嚼動作)、顳顎關節結構變化之影響以及活動義齒穩定度的評估。同時,本研究也利用已建立的研究平台,對接受下顎植體覆蓋式義齒治療之患者,進行其下顎覆蓋式活動義齒六個自由度運動的量測,希望提供對活動義齒較直接而且客觀的評估的方式,作為將來進一步分析影響覆蓋式活動義齒穩定度因子的依據。 本研究利用牙科錐狀電腦斷層系統及動態螢光攝影模式,已經發展出單平面動態螢光立體量測技術,並成功地應用在各種牙科下顎運動學的動作分析與植體覆蓋式活動義齒在下顎功能性運動中穩定性之研究。而這一個不須架設目標框架,高精確度的立體量測技術,將能進一步用來分析顳顎關節生理運動之機制以及活動義齒穩定度對於執行口腔功能運動之影響。 關鍵字:牙科錐型電腦斷層、動態螢光攝影、運動學、顳顎關節、髁關節頭運動、人工植牙、植體覆蓋式義齒、活動義齒運動

並列摘要


Abstract The mandibular kinematics, which has been often represented by the condylar movement of the temporomandibular joint (TMJ), has played a crucial role in the foundation of the modern dentistry. Though the fact that the condyle could perform rotation and translation has been long recognized, the calculation of the amount of rotation hasn’t been solved till recently, after the introducing of rigid-body mechanics into this field. Since then, errors of the classical mandibular kinematics, which has been built based on the pantographic observations, were gradually disclosed. Unfortunately, an unbiased, clear, concrete conclusion of the normal mandibular kinematics is still lacking. The loosing denture has heavy influence in chewing efficiency and edentulous ridge absorption. However, the major methods to evaluate the result of denture fabrication are almost indirectly and subjective by patient’s satisfaction or implant success rates. The condition of the denture motion should be able to directly reflect the stability of denture and its biomechanics under occlusal loading. Therefore, it is important to predict and maintain the result of denture treatment, even though the accurate measurement of denture motion is difficult during physiological function. Denture motion just only occurred in oral cavity. It is difficult directly to observe under oral functional activity. And then, the denture movement also belongs to the rigid body motion that should be not to describe using the single-point and 2-D method. Existing methods to measure the denture motion are either of limited accuracy, difficult to implement, or to interfere with the jaw movement. The purpose of the study aimed to develop a series of methods by single-plane fluoroscopy to measure the three-dimensional (3D) kinematics of temporomandibular joint (TMJ) and mandibular denture in vivo which is essential for relevant clinical applications. Materials and methods At first, the study developed a series of methods, including marker-cluster based registration method (MCRM), bone-based registration method (BRM) and implant-based registration method (IRM), for the measurement of the 3D kinematics of the mandible and TMJ using low radiation dose dental cone-beam CT (CBCT) with fluoroscopy in differential jaw conditions; and to determine experimentally the accuracy and precision of the method using a porcine cadaveric model. The MCRM uses fluoroscopic images and a marker-cluster model (MCM), derived from the CBCT data, to estimate the spatial poses of the maxilla and mandible, and thus the TMJ. The following procedure is to mearsure in vivo mandibular kinematics using single-plane fluoroscopy; to determine the accuracy of the method; and to demonstrate its clinical applicability via measurements on several healthy subjects during opening/closing lateral excursion and chewing movements. This method was based on the registration of single-plane fluoroscopy images and 3D low radiation cone-beam CT data. It was validated using roentgen single-plane photogrammetric analysis at static positions and during opening/closing and chewing movements. Finally, we apply the 3D single-plane fluoroscopy method to measure and analyze the kinematics of the mandible and TMJ on the dentate subjects as well as mandibular dentures during physiological function on the patients with lower implant-overdenture. It was hoped that, with high accuracy and registration rate, these methods would be helpful for the accurate measurement and analyses of the in vivo 3D kinematics of the TMJ and removable denture for physiological studies and clinical applications. Key words: Cone-beam CT; Fluoroscopy; Kinematics; Condylar movements; Temporomandibular Joint; Implant; Overdenture; Denture motion

參考文獻


References
Adell, R., Eriksson, B., Lekholm, U., Branemark, P.I., and Jemt, T. (1990). Long-Term Follow-up Study of Osseointegrated Implants in the Treatment of Totally Edentulous Jaws. Int J Oral Maxillofac Implants 5: 347-359.
Airoldi, R.L., Gallo, L.M., and Palla, S. (1994). Precision of the Jaw Tracking System Jaws-3d. J Orofac Pain 8: 155-164.
Azuma, T., Ito, J., Kutsuki, M., Nakai, R., Fujita, S., and Tsutsumi, S. (2009). Analysis of the Mandibular Movement by Simultaneous Multisection Continuous Ultrafast Mri. Magnetic Resonance Imaging 27: 423-433.
Banks, S.A., and Hodge, W.A. (1996). Accurate Measurement of Three-Dimensional Knee Replacement Kinematics Using Single-Plane Fluoroscopy. IEEE Transactions on Biomedical Engineering 43: 638-649.

延伸閱讀