透過您的圖書館登入
IP:3.148.162.188
  • 學位論文

質環上的喬登τ-導算

Jordan τ-derivations of Prime rings

指導教授 : 李秋坤

摘要


我們將研究質環上喬登τ-導算的結構。明確地說,令R是一個非交換的質環,Qms(R)是其雙邊極大商環,且τ為R上頭的一個反自同構。令δ:R→Qms(R) 為一個喬登τ-導算。我們證明存在一個a ∈ Qms(R) 使得對於所有 x ∈ R 都有δ(x)=ax^τ-xa 如果以下任一條件成立: (一) R不是GPI環; (二) R是一個可除環除了char R ≠=2 且 dim_{C} R=4; (三) R是中心封閉的GPI環且特徵不為二; (四) R是PI環且特徵不等於二。

並列摘要


In the thesis we study the structure of Jordan τ-derivations of prime rings. Precisely, let R be a noncommutative prime ring with Qms(R) the maximal symmetric ring of quotients of R and let τ be an anti-automorphism of R. Let δ:R→Qms(R) be a Jordan τ-derivation. We show that there exists a ∈ Qms(R) such that δ(x) = ax^τ-xa for all x ∈ R if one of the following conditions holds: (1) R is not a GPI-ring. (2) R is a division ring except when charR =/= 2 and dim_{C} R = 4. (3) R is a centrally closed GPI-ring with charR =/= 2. (4) R is a PI-ring with charR =/= 2.

參考文獻


[4] K.I. Beidar, M. Breˇ sar, and M.A. Chebotar. Generalized functional identities with (anti-) automorphisms and derivations on prime rings, I, J. Algebra 215(2) (1999), 644–665.
[6] M. Breˇ sar, and J. Vukman. On some additive mappings in rings with involution, Aequationes Math. 38(2-3) (1989), 178–185.
[7] M.A. Chebotar, Functional identities in prime rings, Russian Math. Surveys 53(1) (1998), 210-211
[8] C.-L. Chuang, A. Foˇ sner, and T.-K. Lee, Jordan τ-derivations of locally matrix rings, Algebr. Represent. Theory 16(3) (2013), 755–763.
[9] C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103(3) (1988), 723–728.

延伸閱讀


國際替代計量