In the thesis we study the structure of Jordan τ-derivations of prime rings. Precisely, let R be a noncommutative prime ring with Qms(R) the maximal symmetric ring of quotients of R and let τ be an anti-automorphism of R. Let δ:R→Qms(R) be a Jordan τ-derivation. We show that there exists a ∈ Qms(R) such that δ(x) = ax^τ-xa for all x ∈ R if one of the following conditions holds: (1) R is not a GPI-ring. (2) R is a division ring except when charR =/= 2 and dim_{C} R = 4. (3) R is a centrally closed GPI-ring with charR =/= 2. (4) R is a PI-ring with charR =/= 2.