透過您的圖書館登入
IP:3.133.12.172
  • 學位論文

採用變頻循環泵浦之液位控制技術研究

Study of Detecting Liquid Level to Control Inverter Circulator Pump

指導教授 : 黃秉鈞
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


太陽能集熱系統結合噴射式製冷技術是一項新能源的改良方案,產生器為供應噴射式製冷系統運作的動力源,當產生器接受外部熱源時,將工作流體蒸發提供噴射器驅動製冷現象,但是同時也會減少內部的工作流體存量,所以必須藉由循環泵浦提供一個穩定的流量來供給產生器。 本研究為開發循環泵浦液位控制器,改良目前噴射式製冷系統所使用的循環泵浦,使循環泵浦更省電,同時又可以達到液位控制。因實際噴射式製冷系統過於複雜,利用一小型液位控制系統做模擬測試分析。首先對循環泵浦的性能做測試,循環泵浦在轉速2000RPM和3000RPM,工作壓差為503kPa,都可吐出0.8LPM以上的流量,足夠噴射式製冷系統中所使用,而循環泵浦耗電量都可控制在50 W以內。接著對液位系統的動態模型進行分析,找出系統的理論動態模型,並經由實驗分析得到系統的動態模型,再以PI控制器設計控制系統,根據系統不同的響應規格,求得最佳的控制參數使系統達到穩定。實驗結果顯示,循環泵浦可以準確的控制產生器的液位,在系統運轉中加入流量干擾為0.5~0.9LPM均能夠有效的抵抗,顯示所設計的液位控制器性能良好。

並列摘要


Solar-collecting system with ejection-cooling technology is a meliorating project on new energy development. Generator provides power for the whole system. When generator receives external heat, it steams the working fluid which drives the cooling operation. However, this operation also reduces internal capacity of the working fluid simultaneously. Hence we use the circulator pump to provide stable flow to the generator. This study is to develop circulator pump that controls liquid level, reform the current circulator pump on ejection-cooling system and reduce power-consuming. Owing to complicated actual ejecting-cooling system, a small liquid-control system is used for simulation experiments. First, the performance of the circulator pump is test. The result shows that while working at pressure drop 503 kPa and rotation speed from 2000 RPM to 3000 RPM, within 50 W power consumption, the circulator pump can provide the flow rate over 0.8 LPM which is enough for ejection-cooling system. Second, the dynamic model of liquid level system is analyzed to get theoretical dynamic model of liquid level system. Third, according to different condition, the optimum control parameters are used to control system stably. Based on the results of the experiments, circulator pump can accurately control liquid level of generator, and can resist external flow turbulent from 0.5 LPM to 0.9 LPM. In general, the performance of designed liquid level controller is well.

參考文獻


[1]胡勝雄,“先進噴射式製冷系統研發”,台灣大學機械工程研究所碩士論文2005年
[9]汪金華,“熱能輔助熱泵製冷供熱系統研究”,台灣大學機械工程研究所碩士論文2008年
[13] 黃秉鈞:『系統識別講義』,國立臺灣大學機械工程學系
[3]Man Gyun Na, “Auto-Tuned PID Controller Using a Model Predictive Control Method for the Steam Generator Water Level,” IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 48, NO. 5, OCTOBER 2001
[4]Peter J. Campo, Manfred Morari, “Model Predictive Optimal averaging level control” AiChE J. 35(4) (1989) 579-591

被引用紀錄


童偉哲(2011)。太陽能輔助噴射製冷系統之最佳效率點追蹤控制研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2011.02973
吳承駿(2011)。太陽能輔助噴射式製冷系統性能最佳化研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2011.02962
劉人豪(2009)。太陽能輔助氣冷式噴射式製冷系統性能最佳化研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2009.10576
蕭忠成(2014)。多段離心泵浦推廣至工業鍋爐市場行銷策略研究-以某外商G泵浦公司為例〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-0412201511580071

延伸閱讀