透過您的圖書館登入
IP:3.15.151.21
  • 學位論文

添加有機化合物TTIP與AIP在甲烷預混火焰中合成TiO2與Al2O3微粒之研究

Gas-Phase Combustion Synthesis of Particles of Titania and Alumina with TTIP and AIP in the Premixed Methane Flame

指導教授 : 馬小康

摘要


本實驗係研究以預混甲烷火焰,燃燒合成TiO2、Al2O3以及TiO2˙Al2O3陶瓷粉末。利用0.32%之鈦前置物TTIP,調整不同的氧氮比,實驗結果顯示,當氧氮體積比4:6時,TiO2之Anatase晶相可占總重量的97.7%;相反地,當降低氧含量時,Anatase晶相則逐漸轉換成Rutile。同時也證實了在燃燒合成TiO2的過程中,除了溫度之影響外,氧氣之含量也可控制晶相的轉換。 以相同之方法,使用鋁前置物AIP=1.22%,由實驗結果獲得氧化鋁亦有晶相之變化﹙Al2O3-γ→δ→θ→ㄐ~。一般而言,以TTIP =0.175%和AIP=0.76%分別通入燃燒器中燃燒,可得到均勻的複合材料TiO2˙Al2O3,這也改善了傳統複合材料混合不均之缺點。 在粒徑分析方面,於多氧的條件下,會使火焰溫度上升,溫度上升的結果將導致產物粒子碰撞機會增加,因此產物之粒徑相對的較大。而以本文所使用之設備可產出粒徑300~500nm的TiO2粉體以及粒徑100~200nm的Al2O3粉體,相較之下,Al2O3粒徑較TiO2小,且也可發現本實驗所製作的兩種粉體,當降低收集高度時,粒晶皆有縮小的趨勢。

並列摘要


Titania/alumina ceramic powders (TiO2/ Al2O3/ TiO2˙Al2O3) was studied by combustion synthesis as volatilized precursors in premixed CH4+O2+N2 flame. The experiment was used 0.32% titanium precursor (TTIP) under different oxidizer composition conditions. When the molar ratio of oxygen to nitrogen (O2/N2) was 40/60, the result showed that the anatase content was 97.7 wt%. Oppositely, the anatase phase transform to the rutile phase gradually when the molar ratio of oxygen to nitrogen was reducing. Beside the effect of the temperature, the results also showed that oxygen content was the key to control crystalline phase changes. In similar way, the crystalline phase changes were found in the order of Al2O3-γ→δ→θ→

參考文獻


[7] Spurr, R. A. and Myers, H., “Quantitative Analysis of Anatase- Rutile Mixtures with an X-ray Diffractometer,” Analytical Chemistry, Vol. 29, pp. 760-762 ,1957.
[8] Sokolowski, M., Sokolowska, A., Michalski, A. and Gokieli, B., ”The in-flame-reaction method for Al2O3 aerosol formation” Journal of Aerosol Scinece, Vol.8, pp.219-230, 1976.
[9] Suyama, Y. and Kato, A., “Effect of additives on the formation of TiO2 Particles by Vapor Phase Reaction”Journal of American Ceramic Society, Vol.68, pp.154-156, 1985.
[10] Parker, F. J. and Rice, R. W., ”Correlation between Grain Size and Thermal Expansion for Aluminum Titanate Materials”, Journal of American Ceramic Society, Vol. 72, pp. 2364-2366, 1989.
[11] Lewis, D. J., “Technique for producing mullite and other mixed-oxide systems”Journal American Ceramic Society, Vol. 74, pp.2410-2413, 1991.

被引用紀錄


曾國倫(2009)。TiO2奈米顆粒應用於DSSCs之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2009.00161
林宏章(2008)。燃燒合成法製備TiO2應用於敏化太陽能電池之研製〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2008.00357
許嘉政(2007)。氣相燃燒合成SiO2及TiO2奈米複合氧化物之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2007.03016
楊雄安(2006)。在甲烷預混與擴散火焰中合成奈米級鈦化合物顆粒之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2006.01461
廖思翰(2005)。利用有機化合物TTIP於預混平板火燄中合成TiO2奈米微粒之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2005.01114

延伸閱讀