透過您的圖書館登入
IP:3.141.8.247
  • 學位論文

固定化細胞進行部份硝化與厭氧氨氧化程序之可行性評估

Evaluating the Viability of Immobilized Cell for Partial Nitrification and ANAMMOX Process

指導教授 : 曾四恭

摘要


由於厭氧氨氧化菌與厭氧氨氧化代謝途徑的最新發現,開啟了廢水自營性生物除氮程序的全新發展。如部份硝化程序、厭氧氨氧化程序,以及結合部份硝化與厭氧氨氧化之程序,比起傳統的硝化/脫硝程序,僅需較少之氧氣供給與不需額外添加碳源,但參予自營性生物除氮程序的厭氧氨氧化菌,為一相當特殊且極難培養之微生物,成為現今應用在實際廢水除氮上的一大問題。 本研究之目的,係評估細菌固定化技術對提升部份硝化與厭氧氨氧化程序穩定性之可行性。首先從內湖污水處理廠取回活性污泥,馴養出研究所需之氨氧化菌與厭氧氨氧化菌,再進行氨氧化菌與厭氧氨氧化菌之固定化細胞製作及活化,以批次試驗探討固定化細胞應用於部份硝化與厭氧氨氧化程序之反應特性,最後再以螢光原位雜交法追蹤固定化細胞之菌相結構。 研究結果顯示,固定化氨氧化菌可以在25天內活化成功,在初始氨氮濃度為10~600 mg-N/L的培養下,固定化氨氧化菌氧化氨氮的反應屬於零階反應,且不同初始氨氮濃度(10~600 mg-N/L)不影響固定化氨氧化菌的反應速率;更重要的是固定化氨氧化菌操作在溶氧濃度0.05~2.0 mg-O2/L,如此大範圍的溶氧條件下,皆可穩定的維持部份硝化作用,極具溶氧控制較為彈性之優勢。由上述成果可知固定化細胞可成功的應用於部份硝化程序。 從本土活性污泥馴養得到厭氧氨氧化菌需要費時100日之久,且推測馴養期間,需先經過厭氧生物分解與脫硝作用兩個階段。本研究的懸浮厭氧氨氧化菌在初始氨氮、亞硝酸鹽氮濃度為15~60 mg-N/L之培養下,擁有之比活性(Specific activity) 0.89~3.33 mg-N/g-VSS•hr ,且在初始亞硝酸鹽氮濃度比上初始氨氮濃度之比值在1.5時,懸浮厭氧氨氧化菌擁有較佳之比活性。然而,固定化細胞製作之過程亦可能對厭氧氨氧化菌造成傷害,活化馴養固定化厭氧氨氧化菌已經長達160日之久,系統中仍未見厭氧氨氧化之表現。

並列摘要


The discovery of anaerobic ammonium oxidizing (ANAMMOX) bacteria launches a new revolution for autotrophic biological nitrogen removal from wastewater. For example, the partial nitrification, ANAMMOX process, the combined partial nitrification and ANAMMOX process. These processes require relative little oxygen and carbon source. However, anaerobic ammonium oxidizing bacteria needed for these processes is difficult to cultivate, this becomes a big problem for actual application. This study evaluated the viability of using immobilization technique to enhance the stability of partial nitrification and ANAMMOX process. First of all, activated sludge from Nei-Hu wastewater treatment plant was used to cultivate ammonium oxidizing bacteria and anaerobic ammonium oxidizing bacteria. Then, PVA-alginate cross-linking with nitrate was applied to produce immobilized cell for ammonium oxidizing bacteria and anaerobic ammonium oxidizing bacteria. Finally, a series of batch experiment was used to analyze the application of immobilized cell for partial nitrification and ANAMMOX process. In addition, fluorescence in situ hybridization(FISH)was used to trace the bacterial community inside the immobilized cell. Ammonium oxidizing bacteria was cultivated from the activated sludge in 25 days. The experimental results indicated that the partial nitrification rate of the immobilized ammonium oxidizing bacteria could be described as a zero-order reaction under initial ammonium concentration ranging from 10 to 600 (mg-N/L). Different initial concentration of ammonium ranging from 10 to 600 (mg-N/L) has no significant influence on the reaction rate. In addition, the immobilized cell of ammonium oxidizing bacteria achieved a stable partial nitrification under different dissolved oxygen ranging from 0.05 to 2.0 (mg/L). Therefore, the immobilized cell has a great potential for actual application in partial nitrification process. Anaerobic ammonium oxidizing bacteria was enriched from activated sludge in about 100 days. The enrichment process contained three periods: anaerobic digest, denitrification and anammox reaction. The specific activity of suspended anaerobic ammonium oxidizing bacteria ranges from 0.89 to 3.33 (mg-N/g-VSS•hr) under initial ammonium and nitrite concentration ranging from 15 to 60 (mg-N/L). Besides, the suspended anaerobic ammonium oxidizing bacteria have a better specific activity when the initial ratio of nitrite to ammonium concentration is 1.5. However, the production of immobilized cell for anaerobic ammonium oxidizing was failed in this study. No ANAMMOX activity of the immobilized cell was found after immobilization. It might caused by a serious damage of anaerobic ammonium oxidizing bacteria during immobilization.

參考文獻


67.謝淵琳,蔡慧穎,張裕釧,林畢修平. 2004. 本土性含氨氮無氧氧化微生物之混合族群在廢水除氮上的應用. 中華民國環境保護學會學刊 27:218-231.
4.Bernet, N., and R. Moletta. 2001. NITRIFICATION AT LOW OXYGEN CONCENTRATION IN BIOFILM REACTOR. Journal of Environmental Engineering 127:266.
5.Bertanza, G. 1997. Simultaneous nitrification-denitrification process in extended aeration plants: pilot and real scale experience. Water Science and Technology 35:53-61.
7.Canizares, R. O., L. Rivas, C. Montes, A. R. Dominguez, L. Travieso, and F. Benitez. 1994. Aerated swine-wastewater treatment with K-carrageenan-immobilized Spirulina maxima. Bioresource Technology 47:89.
9.Ciudad, G., O. Rubilar, P. Munoz, G. Ruiz, R. Chamy, C. Vergara, and D. Jeison. 2005. Partial nitrification of high ammonia concentration wastewater as a part of a shortcut biological nitrogen removal process. Process Biochemistry 40:1715.

被引用紀錄


鄭仁宇(2017)。厭氧氨氧化系統於不同濃度氨氮廢水之處理表現與菌相分析〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201700416
趙永楠(2014)。生物包埋技術提昇好氧環境之脫硝除氮效能〔博士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2014.01470
侯遠德(2009)。利用固定化細胞於氨氮亞硝酸鹽化之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2009.03123
張祐鈞(2015)。細胞固定化影響厭氧氨氧化程序脫氮效能之研究〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-0412201512090760

延伸閱讀