透過您的圖書館登入
IP:3.145.28.3
  • 學位論文

類神經網路於水處理系統工程造價之應用分析

Application of Artificial Neural Networks to Project Cost Analysis for Water Treatment System

指導教授 : 駱尚廉
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


隨著半導體產業製程技術的演進,間接帶動著臺灣整個相關產業鏈蓬勃發展,投資的金額龐大,但產品的生命週期卻不長。因此當有建廠需求時,從營建工程進場到產品量產的時間約在18個月左右。本研究以MATLAB為工具,建構倒傳遞類神經網路預測模式,預測半導體廠房中水處理系統的工程造價預估,資料來源及範圍為第三方專業水處理系統工程公司於2005年至2015年間,參與國內外半導體廠的標案及專案資料共20筆。輸入參數為原水水質、系統要求產水水質及系統類別,輸出值為工程造價預估金額。由案例驗證可知,倒傳遞類神經網路模式可得到快速、精確的預估成果,可有效地預估專案成本。其預估準確率約為93.72%~99.65%。透過本研究所建置的類神經網路預估模型估算專案成本,可作為後續精算的參考依據。

並列摘要


The evolvement of semiconductor manufacturing technology indirectly promotes the development of relative industry chain. The investment amount is large; however the product life cycle shows relatively short and it takes nearly 18 months from factory construction to mass production. Based on MATLAB, this thesis constructs Back-propagation neural network(BPNN) to predict the construction cost of water treatment system of semiconductor factories. The reference collected from a third party construction company specialized in water treatment system from 2005 to 2015 were taken for 20 cases including domestic and foreign semiconductor factory bids and cases. The quality of raw water is inputted and system demands the quality of outflow and system category and cost prediction of construction is outputted. Results reveal that a quick, accurate and effective cost prediction could be achieved by Back-propagation neural network(BPNN) and its accuracy is about 93.72% to 99.65% which means the Back-propagation neural network(BPNN) prediction model through this thesis could be a useful reference for following calculations.

參考文獻


2.黃廷堅(2010),「以類神經網路預估建築工程造價之研究」,國立臺灣大學土木工程學研究所,碩士論文。
23.陳慶隆、武季蔚(2007),「應用貝氏類神經網路於初次公開發行時折價幅度之預測」,朝陽商管評論,第六卷第二期,(民96年7月)
1.蘇敏郎(2014),「應用類神經網路於高科技廠專案工程成本估算之研究」,國立交通大學工學院工程技術與管理學程,碩士論文。
11.翁祖炘、林利國、呂騏竹(2007),「應用複迴歸與倒傳遞類神經網路模式探討排水溝工程成本預測之相依性—以南投地區為例」,台灣公路工程,Vol.33,No.2。
25.Wareen McCalloch and Walter Pitts ,1943,A Logic Calculus of Ideas Immanent in Nervous Activity,

延伸閱讀