透過您的圖書館登入
IP:18.221.190.253
  • 學位論文

以流體化床進行濕式碳酸化反應之績效評量

Performance Evaluation of Aqueous Carbonation by Fluidized Bed Reactor

指導教授 : 蔣本基

摘要


為了提升碳酸化法封存二氧化碳之商業化之可行性,本研究將重點分作技術改良以及技術評估兩大部分。首先試圖以流體化床反應器與嘗試數種含鈣製鋼爐石作為反應進料,藉以提升濕式條件下碳酸化轉換率。再以3E(環境、經濟、工程)作為技術評估指標,對實驗室級二氧化碳封存技術進行評量。 技術面上,以低耗能及低耗材作為實驗設計理念。利用各項操作因子:反應進料、反應時間、反應溫度、二氧化碳流量以及反應器體積之改變,來討論各因子對轉化率的影響。結果顯示當轉爐石在反應時間1小時,溫度控制在60 oC,二氧化碳壓力控制在101.3 kPa,流量控制在0.1 LPM且粒徑小於44μm時,轉化率約為68%。主要影響因子為反應溫度以及反應時間,而此反應動力可藉由縮核模式與阿瑞尼士方程進行描述。 評估面上,以技術評估評量二氧化碳封存技術確認其商業化價值。以生命週期評估軟體-Umberto 5.5 作為環境衝擊工具,結合國際資料庫-Ecoinvent 2.0與本土化數據進行不同衝擊類別下量化工作。另外一方面,結合文獻資料以及實驗數據進行經濟面與工程面上實驗級評量。結果顯示,除了二氧化碳削減率未能達到績效值(85%)外,此技術無論在成本、能源消耗、產物安定性以及貯存能力上均有出色的表現。表示其為可行的二氧化碳的減量技術。

並列摘要


The CO2 sequestration by aqueous carbonation via steel making slag at various operational conditions was investigated in this study. The operational conditions include type of steel making slag, reaction time, reaction temperature, CO2 flow rate and reactor volume. Experiments were conducted at different operational conditions to evaluate their influence on the carbonation conversion. The results indicate that the basic oxygen slag has the highest carbonation conversion around 68% at a reaction time of one hour, operating pressure of 101.3 kPa and temperature at 60 oC. The major factors affecting the carbonation conversion are reaction time and temperature. The reaction kinetic of the carbonation conversion can be expressed by the shrinking core model and the Arrenius Equation. The Life Cycle Assessment software, Umberto 5.5, was used to evaluate the commercial value of this CO2 sequestration technology. It was concluded that aqueous carbonation by fluidized bed reactor is outstanding on cost, energy savings, product stability and storage capacity. The CO2 sequestration by carbonation via basic oxygen furnace slag is an effective alternative in reducing CO2 emission.

參考文獻


Bullard, I., Clark, W., Herendeen, R.A., 1975. The energy cost of goods and services. Energy Pol. 3, 268-278.
Domingo, C., Loste, E., Garcia-Carmona, J., Fraile, J., 2006. Calcite precipitation by a high-pressure CO2 carbonation route. The Journal of Supercritical Fluids 36(3), 202-215.
Eloneva, S., Teir, S., Salminen, J., Fogelholm, C.J., Zevenhoven, R. 2008. Fixation of CO2 by carbonating calcium derived from blast furnace slag. Energy 33(9), 1461-1467.
Fan, L.S., Kreischer, B.E., Tsuchiya, K. 1988. Transport Processes in Fluidized Beds.
Fan, L.S., Bavarian, F., Gorowara, R.L., Kreischer, B.E., Hydrodynamics of Gas-Liquid-Solid Fluidization Under High Gas Hold-up Conditions. Powder Technology 53, 285-293.

被引用紀錄


Liu, H. J. (2013). 於漿體反應器中進行濕式碳酸化反應之績效評估 [master's thesis, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2013.10190
Lin, K. H. (2013). 利用RSM及LCA建立轉爐石捕獲二氧化碳之最適化研究 [master's thesis, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2013.10168
Chen, T. L. (2012). 以轉爐石與冷軋廢水於旋轉填充床捕捉二氧化碳之研究 [master's thesis, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2012.01463
Pan, S. Y. (2011). 在超重力旋轉填充床中利用煉鋼爐石碳酸化反應進行二氧化碳捕捉 [master's thesis, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2011.01529
余秉澤(2014)。以還原碴廢棄材料捕捉二氧化碳之研究〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-0412201512011099

延伸閱讀