透過您的圖書館登入
IP:3.145.156.46
  • 學位論文

應用於複合動力車之高功率密度永磁同步馬達設計方法

Design Method of High Power Density Permanent Magnet Synchronous Motor for HEV

指導教授 : 鄭榮和

摘要


本論文以提升複合動力車用100kW驅動馬達的功率密度為研究主軸,建立一套三步驟的轉子優化流程,包含磁石夾角優化、極弧係數優化、磁障設計優化。優化過程中同時探討磁極間空氣槽影響、磁石間隔磁槽影響、d、q軸電感差值變化、反電動勢諧波影響與抗退磁的能力。使用本研究建立的轉子優化流程,能使一初始的永磁電機設計,在不更動電機大多數幾何尺寸下,得到功率密度的提升。而在永磁電機中依繞組設計不同又可分為集中式繞組與分佈式繞組,選擇不同型式繞組其電機特性就有很大的不同,因此本研究針對兩種不同繞組電機,分別進行設計並使用此三步驟轉子優化流程,比較兩者功率密度增加的幅度差異,並得到兩種電機優化後的性能與特性差異性。最後,透過本研究建立的功率密度提升流程,可得到功率密度最大化的馬達優化設計。

並列摘要


The objective of this study is to enhance the power density of 100 kW traction motor for HEV. In this study presents a three steps rotor optimization process including magnet arrangement angle optimization, pole embrace optimization and flux barrier design. Through this process can enhance saliency ratio, reduce back emf harmonics and reduce demagnization area. In this study also compare the additional barrier between poles or magnets would influence the motor performance. Using this rotor optimization process can improve the power density of an original motor without changing too many motor design parameters. But in motor design, the winding type will influence motor’s properties a lot. This study compares the difference between FSCW motor and ISDW motor using the three steps rotor optimization process. Finally get a motor design with high power density and high performance for HEV.

參考文獻


[1] ICCT, "Global Comparison of Light-Duty Vehicle Fuel Economy/GHG Emissions Standards," 2012.
[2] 複合動力系統資料, Available:
[4] 磁滯曲線資料, Available:
[5] R. R. Fessler and M. Olszewski, "Assessment of motor technologies for traction drives of hybrid and electric vehicles," ORNL/TM-2011/73, Mar. 2011.
[6] S. Abe and M. Murata, "Development of IMA Motor for 2006 Civic Hybrid," SAE Technical Paper 2006-01-1505, 2006.

延伸閱讀