透過您的圖書館登入
IP:18.190.217.134
  • 學位論文

cabozantinib 誘導K562細胞株進行紅血球系列分化之機制的探討

Study on the molecular mechanism of cabozantinib-induced erythroid differentiation of K562 erythroleukemia cells

指導教授 : 林亮音

摘要


大部分慢性骨髓性白血病(chronic myeloid leukemia, CML)的病人體內會存在第 9 對及第 22 對染色體轉位所產生的 BCR-ABL 融合蛋白,此融合蛋白會不斷啟動下游訊息傳遞蛋白造成細胞不斷增生、並且阻止細胞分化。因此,利用酪胺酸激酶抑制劑抑制BCR-ABL融合蛋白酪胺酸激酶的活性為治療辦法之一。Cabozantinib(XL184,N-(4-((6,7-Dimethoxyquinolin-4-yl)oxy)phenyl)-N-(4-fluorophenyl) cyclopropane-1, 1-dicarboxamide)為一多重酪酸胺激酶抑制劑,此藥物經美國FDA核准用於治療腎上腺髓質癌,建議每日用量與每日最大用量分別為140毫克與175毫克。根據藥物動力學研究顯示此藥物在每日用量175毫克時,人體血漿濃度可達2.8uM。本實驗室先前利用cabozantinib 進行實驗時,發現cabozantinib處理 K562 細胞放置數天後,細胞會變成紅色,故推論 cabozantinib 具有誘導K562細胞分化走向紅血球系列之能力,因此,我們主要目的是探討其中的機制。 首先,我們證實在小於血漿可達濃度之1uM cabozantinib處理K562細胞4天後,細胞會走向紅血球系列分化而非血小板系列。我們發現經1uM cabozantinib處理之K562細胞利用二胺基聯苯胺鹽酸(benzidine dihydrochloride)試驗與流式細胞儀,偵測細胞內血色素與細胞表面抗原CD71以及CD235a的表現量,證實經由cabozantinib處理之K562細胞,其紅血球系列分化相關之蛋白表現上升。而qRT-PCR 分析cabozantinib處理之K562細胞與紅血球分化相關之基因表現,例如:r-globin、transferrin receptor(TfR、CD71)、glycoforin A(GPA、CD235a)等基因,也呈現顯著上升的趨勢。我們發現cabozantinib可抑制K562細胞生長速率,而利用流式細胞儀分析細胞週期發現有細胞周期停滯的現象。進一步探討cabozantinib調控K562細胞分化之機制,我們發現cabozantinib處理K562細胞6小時後,細胞中BCR-ABL及其下游蛋白ERK, STAT5,AKT磷酸化之情形會隨著藥物濃度上升而下降。實驗結果亦顯示cabozantinib處理K562細胞48小時後,可造成c-myc蛋白表現下降,伴隨著p27蛋白表現上升。根據以上結果我們認為cabozantinib可藉由負調控AKT磷酸化使得p27蛋白表現增加,進而刺激K562細胞往紅血球系列分化。另外,我們也發現cabozantinib處理K562細胞6小時後,細胞中JNK及其下游分子磷酸化情形上升,並且利用JNK抑制劑可有效中和cabozantinib所刺激之分化現象,故我們認為cabozantinib亦可能透過JNK路徑調控K562細胞進行分化。

並列摘要


Chronic myeloid leukemia (CML) is a pluripotent hematopoietic stem cell disease which arises from the bcr-abl oncogene. The Bcr-Abl oncoprotein, as a constitutively activated tyrosine kinase, could activate multiple signaling pathways for the malignant transformation. Therefore, specific inhibitors of tyrosine kinases are attractive therapeutic agents. Cabozantinib (XL184, N-(4-((6, 7-Dimethoxyquinolin-4-yl) oxy) phenyl)-N-(4-fluorophenyl) cyclopropane-1, 1-dicarboxamide), a multiple tyrosine kinase inhibitor, has recently been approved by US FDA for the treatment of medullary thyroid cancer (MTC). The recommended daily dose and the maximum-tolerated dose (MTD) of cabozantinib are 140mg and 175 mg, respectively. Pharmacokinetics study revealed that the steady-state plasma levels were 2.8μM when administrating MTC patients with 175mg daily. In our preliminary results revealed that treating K562 cells harboring bcr-abl oncogene with 1μM cabozantinib after a few days demonstrated an erythroid differentiation phenotype. Treatment with plasma-reachable dose (1μM) of cabozantinib in K562 leukemia cells for 96 hrs induced erythroid differentiation but not megakaryocytic maturation. We observed a significant population of cells with cytological features of early erythroid differentiation and significantly increased benzidine-positive cells (up to 50%) accompanying with significant accumulation of γ-globin. Expression of transferrin receptor (TfR, CD71) and glycophorin A (GPA, CD235a), both well documented erythroid-specific gene, were induced 3 to 4-fold relative to untreated control cells. We found that cabozantinib could inhibit cell growth of K562 cells, and cell cycle analysis revealed that cabozantinib could also result in G0/G1 cell cycle arrest in K562 cells. Signaling pathway analysis revealed that cabozantinib could decrease phosphorylation of BCR-ABL, ERK, STAT5 and AKT at 6 hours in a dose-dependent manner. Further analysis revealed that cabozantinib treatment could decrease c-myc with a concomitant induction of p27 at 48 hours in a concentration- dependent manner. Taken together, we proposed that cabozantinib could induce K562 cell differentiation toward erythroid lineage through inhibiting PI3K/AKT pathway, of which, p27 was involved. In addition, we found that cabozantinib treatment could up-regulate phosphorylation of JNK and its downstream protein and JNK inhibitor could reduce the cabozantinib-induced erythroid differention on K562 cells. We considered that cabozantinib could also induce K562 cell differentiation toward erythroid lineage through JNK pathway.

參考文獻


1. Baccarani M, Dreyling M, Group EGW. Chronic myeloid leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21 Suppl 5:v165-167.
2. Sawyers CL. CHRONIC MYELOID LEUKEMIA. N Engl J Med. 1999;340:1330-1340.
3. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2014 update on diagnosis, monitoring, and management. Am J Hematol. 2014;89(5):547-556.
4. Bizzozero OJ, Jr., Johnson KG, Ciocco A. Radiation-related leukemia in Hiroshima and Nagasaki, 1946-1964. I. Distribution, incidence and appearance time. N Engl J Med. 1966;274(20):1095-1101.
5. Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 2005;5(3):172-183.

延伸閱讀