透過您的圖書館登入
IP:3.129.23.30
  • 學位論文

機器蛇攀爬階梯之步態規劃與分析

Gait Planning and Analysis for Stair Climbing of Snake Robot

指導教授 : 周瑞仁

摘要


本研究發展一套機器蛇攀爬階梯之步態演算法。根據機器蛇的機構限制、力矩分析及空間限制等因素,提出穩定攀爬階梯的規則並設計6階段系統化步態規劃流程。階段1為舉升前段單體並勾住第n+1階梯上。舉升過程中因穩定性及安全性的考量,必須注意重心坐落位置。分段舉升前段單體,可控制重心位置,避免機器蛇傾倒,同時可減少欲舉升單體所需的最大力矩;階段2、3為利用尾部單體支撐起機器蛇,支撐過程中坐落於n+1階梯上的單體安定力矩需足以克服後續舉升單體的力矩避免攀爬失敗;階段4為將重心往n+1階梯移動;階段5為抬舉尾部單體,並移至第n+1階梯上。在抬起過程中,其坐落於n+1階梯上的單體安定力矩需足以克服後段單體抬起的力矩,以避免滑落導致攀爬失敗;階段6為機器蛇回歸初始位置,以利下一階梯的攀爬。在攀爬過程中,任何階段均需考量幾個因素:將重心由樓梯的第n階移至第n+1階;機器蛇單體互呈垂直的架構,在旋轉方向上有pitch及yaw之差別;以及需注意幾何空間上的限制。 本研究利用6階段系統化步態規劃流程產生步態,使其能穩定、安全地攀爬階梯,取代操作者手動逐步控制機器蛇攀爬階梯。除了簡化攀爬階梯的步驟之外,並提供各階段單體所需轉動的順序及角度。以此系統化步態規劃流程,針對不同節數之機器蛇與不同階梯環境產生攀爬步態,並進行測試。實驗結果顯示皆能成功攀爬,且不需準確地回歸至初始位置即可繼續下一階梯的攀爬,並能於11秒內完成攀爬一階階梯。此外本研究亦針對不同的階梯高度,提供所需最少節數的機器蛇之資訊,以便簡化機構、降低成本。

並列摘要


This research developed a stair-climbing algorithm for a 3D snake robot. According to the limitation of structure, the analysis of torque and the consideration of spaces, the research finds 6 rules to systematically plan the gaits of stair climbing, and develops a six-stage climbing algorithm. The six stages can be described as below. Stage 1:Lifting the first some units of snake robot and hooking stair n+1. For stability and safety during lifting, we have to take the position of center of gravity into consideration. Dividing the gaits into several steps control the position of center of gravity to prevent the snake from falling during lifting and helps lower the maximal torque of lifting units. Stage 2 & 3:Use the rear some units to raise up the body. The stable torque of units on the stair n+1 must be greater than that of units to be lifted with no risk of falling downwards. Stage 4:Shifting the center of gravity of snake robot to stair n+1. Stage 5:The rear some units lift up to stair n+1. The stable torque of units on the stair n+1 must also be greater than that of units to be lifted with no risk of falling downwards. Stage 6:In order to climb next stair, snake robot has to return to initial position. In the six-stage processes, we consider three essentials. 1. Shifting the center of gravity of snake robot from stair n to stair n+1. 2. Rotating directions (pitch and yaw) have to be taken into account during climbing. 3. Considering the spatial limitation while climbing. The six-stage algorithm generates gaits that assure stability and safety during climbing and offer substitutions for step-by-step manual control. Besides the simplification of climbing processes, it also provides the order of units and angles to be rotated in every stage. The result of experiment indicates that snake robot successfully climbs different stairs with the systematic gaits calculation methods where the snake robot can consist of from 8 units to 12 units. The snake can accomplish one-stair climbing in 11 seconds. What's more, the research provides the information for determining the least number of units needed so as to simplify the mechanism and reduce the cost.

參考文獻


3. 魏正宗。2006。透過GSM模組遙控機器蛇之研發與其步態規劃。碩士論文。台北:國立台灣大學生物產業機電工程學研究所。
2. 影像顯示器規格 On-line available at
4. AI motor 1001 Datasheet. On-line available at
5. Chernousko, F.L. 2000. Snake like motions of multi-body systems over a rough plane. In “Proc. of 2000 2nd International Conference on Control of Oscillations and Chaos”, 2:321-326.
6. Dowling, K. 1997. Limbless locomotion: learning to crawl. Ph.D. Thesis, Carnegie Mel-Ion University, Pittsburgh, PA.

被引用紀錄


來信頤(2015)。蛇型機器人之機構設計與實作〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201500681

延伸閱讀