透過您的圖書館登入
IP:18.191.135.224
  • 學位論文

奈米流道生物感測研究

Biosensors in Extended Nanofluidic Device

指導教授 : 周家復
共同指導教授 : 李弘文(Hung-Wen Li)

摘要


微流道具有低樣品體積需求、反應速度快、微型化與自動化的優勢,已被廣泛應用於生物醫學檢驗。近年來技術的進展,更將流道的尺度推到奈米等級,促使生物分子間的反應距離更接近其擴散距離,達到極高(接近100%)的反應效率。本研究結合表面修飾與室溫晶片封裝方法,建立了一個結合抗體陣列的奈米流道生物感測平台。藉由螢光標記,即時觀察奈米流道內抗原與抗體的結合反應。由於奈米流道內的高反應效率特性,常見上游的抗體陣列抓取了多數的螢光抗原,造成下游生成無螢光訊號之無反應區域。我們模擬流道內的流體輸送與反應,重現奈米流道內反應的空間分佈,並開發了奈米流道內特用的一維模型,簡化並加快運算的效率。本研究可望進一步開發為微小化、同時檢測多種生物標記之檢驗平台。

並列摘要


Nano/microfluidic devices have shown their superior capabilities in various applications. As compared to conventional biochemical assays, nano/microfluidic devices pose minimized dimensions, reduce the required sample consumption and shorten the overall assay time. Recent progress in lab-on-a-chip technologies further allows the miniaturization of fluidic channels to nanoscale level where molecular reactions become extremely efficiently as the inter-molecular distance are confined to be comparable to the molecular diffusion distance. This study represents a methodology to implement antibody microarray into extended nanoslits. Through moderate surface modification, fluidic chips are compatible with microarray spotting and the following chip encapsulation procedure. A room temperature chip-bonding process using polysilsesquioxane as gasket layer was integrated in the procedure to preserve the activities of the immobilized biomolecules. Furthermore, the antigen-antibody binding kinetics in the confined space was observed via real-time fluorescence imaging. In addition to antibody specificity preservation, extremely high reaction efficiency was observed as upstream microspots collect most fluorescently labeled target molecules and creates a dark depletion zone in the downstream. The kinetics was simulated through a finite element model and also a simplified one-dimensional convection-reaction model, which confirms that diffusion is efficient in the confined space. This work provides a combined strategy to incorporate protein microarrays within extended nanoslits, and a side-by-side simulation to study the kinetics.

參考文獻


Alvarez, M. and L. M. Lechuga (2010). "Microcantilever-based platforms as biosensing tools." Analyst 135(5): 827-836.
Amzel, L. M. and R. J. Poljak (1979). "3-DIMENSIONAL STRUCTURE OF IMMUNOGLOBULINS." Annual Review of Biochemistry 48: 961-997.
Bange, A., H. B. Halsall and W. R. Heineman (2005). "Microfluidic immunosensor systems." Biosensors and Bioelectronics 20(12): 2488-2503.
Besecker, J., K. A. Cornell and G. Hampikian (2013). "Dynamic passivation with BSA overcomes LTCC mediated inhibition of PCR." Sensors and Actuators B: Chemical 176(0): 118-123.
Brecht, A., G. Gauglitz and J. Polster (1993). "Interferometric immunoassay in a FIA-system: a sensitive and rapid approach in label-free immunosensing." Biosensors and Bioelectronics 8(7): 387-392.

被引用紀錄


Teng, H. Y. (2005). 以米為基質固態培養紅麴菌生產色素、Monacolin K及Citrinin產量變化之研究 [master's thesis, Tatung University]. Airiti Library. https://www.airitilibrary.com/Article/Detail?DocID=U0081-0607200917232403

延伸閱讀


國際替代計量