透過您的圖書館登入
IP:3.139.97.157
  • 學位論文

含聚集發光基團之三苯胺聚醚碸於光感式有機場效應電晶體式記憶體之應用

Triphenylamine-Based Poly(ether sulfone)s with AIE-Active Moieties for The Application of Photo-Responsive Organic Field-Effect Transistor Memories

指導教授 : 劉貴生
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


隨著數位技術的飛速發展,大量的數據需要以高速且低干擾的方式存儲。與傳統的電驅動記憶體相比,光子記憶體具有超快的傳輸速度和低耗能,使其在非易失性記憶體中具有相當大的吸引力。在此,設計了具有不同側基的三苯胺(TPA)聚醚碸(PES)並將其作為駐極體引入到電晶體式光子記憶體元件中。TPE-PES和CNBr-PES表現出聚集誘導發光(AIE)特性,薄膜態的高量子效率使它們能夠有效地促進半導體層的電荷濃度。因此,通過合適的能階在界面中產生層間激子,可以獲得卓越的光寫入行為。此外,導入碸官能基以獲得更高的介電常數並利用聚醚碸獲得更大的並五苯晶粒以降低元件之電阻,使得讀取電壓和擦除電壓可以降低到10 V以下,以接近實際應用中的節能要求。

並列摘要


Along with the ever-increasing development of digital technology, the capacities of storing massive data with high speed and low interference are required. Compared with conventional electrically operated memory, photonic memory possesses ultrafast transmission and low power consumption making it considerably attractive in non-volatile memories. Herein, triphenylamine (TPA)-based poly(ether sulfone)s (PESs) with different pendant groups were designed and introduced into transistor-type photonic memory devices as electrets. TPE-PES and CNBr-PES exhibit aggregation-induced emission (AIE) characteristics, and the high quantum efficiency in film state offers them to effectively facilitate the charge concentration of the semiconductor layer. Accordingly, exceptional photo-programming behavior could be obtained through suitable energy level generating interlayer excitons in the interface between the semiconductor and electret layer. Furthermore, utilizing the PES as a charge storage layer could obtain a larger grain size of pentacene to reduce crystal boundaries, which facilitates charge transfer and decreases the driving voltage. The incorporation of sulfone moiety could also gain a higher dielectric constant to lower the working voltages under 10 V to address the energy-saving requirement in practical application.

參考文獻


[1] A. Iwan, D. Sek, Prog. Polym. Sci. 2011, 36, 1277.
[2] H. J. Yen, G. S. Liou, Prog. Polym. Sci. 2019, 89, 250.
[3] a) Y. Oishi, H. Takado, M. Yoneyama, M. A. Kakimoto, Y. Imai, J. Polym. Sci. A: Polym. Chem. 1990, 28, 1763; b) Y. Oishi, M. Ishida, M. A. Kakimoto, Y. Imai, T. Kurosaki, J. Polym. Sci. A: Polym. Chem. 1992, 30, 1027.
[4] a) G. S. Liou, S. H. Hsiao, M. Ishida, M. Kakimoto, Y. Imai, J. Polym. Sci. A: Polym. Chem. 2002, 40, 2810; b) G. S. Liou, S. H. Hsiao, M. Ishida, M. Kakimoto, Y. Imai, J Polym. Sci. A: Polym. Chem. 2002, 40, 3815; c) G. S. Liou, S. H. Hsiao, J. Polym. Sci. A: Polym. Chem. 2003, 41, 94.
[5] S. H. Cheng, S. H. Hsiao, T. H. Su, G. S. Liou, Macromolecules 2005, 38, 307.

延伸閱讀