透過您的圖書館登入
IP:18.188.119.49
  • 學位論文

圖的權重選擇性

Weight Choosability of Graphs

指導教授 : 張鎮華

摘要


1,2,3-猜想,是一個在距今約10年前被提出來的圖的權重選擇性的猜想。雖 然現在還是未被證明出來,但在近年來也已經有了很大的進展。於是就有人提出 了更高難度的猜想:3-重量可選猜想,並希望能藉由3-重量可選猜想的證明來順 便解決1,2,3-猜想這個問題。本篇論文主要是證明出來所有的完全多分圖、仙人 掌圖、餘圖以及距離繼承圖全部也都是3-重量可選的。

並列摘要


1,2,3 – conjecture, for the problem of weight choosability and which was posed by Karo’nski in 2004. Even though it is a unsolved problem in graph theory, someone proved it in some special cases of graphs. Bartnicki, Grytczuk and Niwczyk posed a more difficult conjecture: 3-weight choosable conjecture, and make a different approach for the problem. The main results of this thesis is to prove that complete r-partite graphs, cactus, cographs, and distance-hereditary graphs are 3-weight choosable.

參考文獻


[1] L. Addario-Berry, R. E. L. Aldred, K. Dalal and B. A. Reed, Vertex colouring edge partitions, J. Combin. Theory Ser. B 94 (2005), 237-244.
[3] S. Akbari, E. Ehsani and P. Jalaly Khalilabadi. Submitted to European Journal of Combinatorics (2011).
[4] N. Alon, Combinatorial Nullstellensatz, Combin. Prob. Comput. 8 (1999), 7-29.
[5] N. Alon and M.Tarsi, Anowhere-zero point in linear mappings, Combinatorica 9 (1989), 393-395.
[6] H.J. Bandelt and H.M. Mulder Distance{hereditary graphs J. Combin. Theory Ser. B 41 (1986), 182-208.

延伸閱讀


國際替代計量