透過您的圖書館登入
IP:3.149.233.104
  • 學位論文

功能性聚(2-乙烯基吡啶)高分子於光子有機場效電晶體式記憶體之應用

Application of Functional Poly(2-vinylpyridine) Polymer in Non-Volatile Memory of Photonic Organic Field-Effect Transistor

指導教授 : 陳文章
本文將於2024/07/23開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


隨著物聯網(IoTs)和雲端計算(Cloud Computing)而發展出的人工智能(AI)蓬勃發展,迎接大數據(Big Data)時代的來臨。傳統的馮諾伊曼計算,由於內存硬件和處理器的分離,逐漸面臨挑戰,例如:數據處理與計算速度慢和儲存容量低。因此,基於光具備高帶寬、低串擾和低延遲等優點,光照上網技術(Li-Fi)引起了研究人員的廣泛關注,它是一種利用可見光進行互聯網數據傳輸的通訊技術。在各種光通訊的元件中,光驅動電晶體式記憶體已被視為下一代訊息儲存、加密、解密和防偽的潛在候選者。現有光驅動電晶體式記憶體多數專注於光響應材料的發掘,但分散與阻隔光響應材料混摻的絕緣材料、其結構型態及其光電特性與有機半導體主動層之關係尚未被深入研究。此外以電記憶資訊,光進行抹除的驅動模式已被大量研究,而光記憶電抹除則為少數且全光學驅動和合併傳輸層與記憶體層的單層元件尚未被開發。本研究論文致力於提高以往光驅動電晶體式記憶體的光電性能、開發全新的光驅動模式,並引入低能耗的光子突觸元件為主要範疇。 第二章節中,與先前以聚苯乙烯(PS)為高分子基材的研究相比,揭示了含氮高分子-聚(2-乙烯基吡啶)(P2VP)混摻有機-無機鈣鈦礦(MAPbBr3)時,由於聚(2-乙烯基吡啶)的氮原子與鈣鈦礦的鉛離子通過路易士酸的相互作用,使得包埋於高分子基材中的鈣鈦礦奈米晶體(NCs)尺寸侷限於 7-9 nm。聚(2-乙烯基吡啶)光子電晶體式記憶體的電流開關比為105,高於聚苯乙烯103,並且只需要5秒的光寫入時間和-1 伏特的低電壓操作即可達到儲存資訊的功能。此元件具有良好的長期穩定性大於6個月和優良高於100圈的重複循環性。 第三章節中,利用n型光敏性材料-BPE-PTCDI和混摻的浮柵層-MAPbBr3/P2VP其相互匹配的能階來製造全光驅動的光子電晶體式記憶體。此元件在藍光、綠光和藍光的照射下進行寫入,在紫外光的照射下進行抹除,顯示出穩定的光寫(PW)-讀取(R)-光抹(PE)-讀取(R) (PW-R-PE-R) 高達104的電流開關比。元件光抹除的時間只需要1秒,其長期穩定性超過104秒。由於“光寫”和“光抹”特性的雙重操作,接著去除剛性柵電極以製造軟性兩極式光子記憶體,在1000次的彎曲循環後依舊表現穩定的光電特性,此外也表現出多層級的電性行為。 第四章節中,利用一系列不同絕緣軟鏈段的聚(3-己基噻吩)(P3HT)嵌段共聚物 (BCP),包括聚苯乙烯(PS)、聚(2-乙烯基吡啶)(P2VP)、聚(2-乙烯基萘)(PVN)和聚(丙烯酸丁酯)(PBA)製備非揮發性記憶體和人工突觸雙重功能的光子電晶體式記憶體。三個主要的因素影響其元件特性: 一、絕緣鏈段的剛性;二、絕緣鏈段和聚(3-己基噻吩)之間的能接差異性;三、絕緣鏈段上官能基捕捉電子的能力。而聚(3-己基噻吩)嵌段聚(2-乙烯基吡啶)元件其電流開關比高達105,長期穩定性高達104秒,和超過100圈的連續循環操作。此外,元件展現神經型態行為的光子突觸功能。

並列摘要


With the explosive growth of Internet of Things (IoTs) and Cloud Computing that the artificial intelligence (AI) are developed therefore welcomed the advent of the era of Big Data. The traditional separation of the memory and processor of von Neumann computing gradually faces the challenges of data processing, low computing speed, and low data capacity. Hence, based on the advantages of broad light bandwidth, low crosstalk, low energy consumption, and low RC delay of light. The light fidelity (Li-Fi) has intensive drawn researchers’ attention, which is a visible photo communication technology that integrates internet data transport. Among the various photo communication components, the photonic transistor memory has been regarded as a potential candidate for the information storage, encryption, decryption, and anticounterfeiting in next generation. Most of the existing photonic transistor memory focused on the discovery of photoresponsive materials. However, the relationships of the morphology and optoelectronic characteristics of insulating materials for dispersing photoresponsive materials, with those of organic semiconducting active layer have not been fully explored yet. In addition, the triggering mode of electrical programming and photo-erasing has been studied a lot, while the photo-programming, all photo-driving mode, and monolayer combining the transporting and memory layer photo transistor memory has not yet been developed. This dissertation focused on improving the electrical performance of previous optical memory devices, developing a brand new photo trigger circumstance, and introducing low consumption photonic transistor synapse as the main purpose. In Chapter 2, compared to the previous study of polystyrene (PS) as the polymer matrix, revealing the N-containing polymer, poly(2-vinyl pyridine) (P2VP) hybrid the organic-inorganic perovskite (MAPbBr3) owing to the intense coordination between the N atom in P2VP and the Pb2+ ions of perovskite through Lewis acid-based interaction to restrain the size of embedded perovskite nanocrystals (NCs) into the 7-9 nm. The P2VP-based photonic transistor memory perform the high On/Off up to 105 than the reference PS-based device 103 value and only the 5 s illumination time and -1 V low drain voltage can achieve photo-recording function. This device presents the well long-term stability over 6 months, and excellent stress endurance over 100 cycles. In Chapter 3, utilizing the appropriately match energy levels photoactive material-n-type BPE-PTCDI and hybrid floating gate-MAPbBr3/P2VP to fabricate the complementary light absorption fully photo driving photonic transistor memory. The device shows stable switching cycles of photo-writing (PW)−reading (R)−photo-erasing (PE)−reading (R) (PW−R− PE−R) with a high memory ratio of ∼104 under the blue, green, and blue irradiated to record; the ultraviolet irradiated to erase. The photo-erasing only requires 1 s light illumination and long-term retention over the 104 s. Owing to the dual manipulation of “photo-writing” and “photo-erasing” property, removing the rigid gate electrode to manufacture the novel two-terminal flexible photonic memory that exhibits the stable electrical performance after 1000 bending cycles but also manifests a multilevel function behavior. In Chapter 4, a series of poly(3-hexylthiophene) (P3HT)-based block copolymers (BCPs) with different coil segments, including polystyrene (PS), poly(2-vinylpyridine) (P2VP), poly(2-vinylnaphthalene) (PVN), and poly(butyl acrylate) (PBA), were first used to develop dual functions of nonvolatile photomemory and artificial synapses. Three main factors were unveiled to govern the properties of these P3HT-based BCPs: (i) rigidity of the insulating coil blocks; (ii) energy levels between the insulating blocks and P3HT; and (iii) electrophilic ability of the functional groups on the insulating blocks. The P3HT-b-P2VP device demonstrated a high On/Off of 105, long retention time of 104 s, and switching capability over 100 consecutive cycles. In addition, this device also exhibited a photo synaptic function that emulated synaptic behaviors.

參考文獻


1. J. Zhou and J. Huang, Adv. Sci., 2018, 5, 1700256.
2. Y. Yu, Q. Ma, H. Ling, W. Li, R. Ju, L. Bian, N. Shi, Y. Qian, M. Yi and L. Xie, Adv. Funct. Mater., 2019, 29, 1904602.
3. M. Ahmadi, T. Wu and B. Hu, Adv. Mater., 2017, 29, 1605242.
4. H. Wang and D. H. Kim, Chem. Soc. Rev., 2017, 46, 5204.
5. W. Li, F. Guo, H. Ling, H. Liu, M. Yi, P. Zhang, W. Wang, L. Xie, W. Huang, Small 2018, 14, 1701437.

延伸閱讀