透過您的圖書館登入
IP:18.223.20.57
  • 學位論文

氣磁浮減振平台開發與性能探討

Development and Performance Study of a Magnetic Aerostatic Vibration Isolation Platform

指導教授 : 黃光裕
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文整合氣靜壓軸承及電磁原理開發一種氣磁浮減振平台。氣靜壓軸承利用套杯式氣徑壓軸承之設計概念,將軸徑向之氣膜連接起來以提升其承載力。軸向氣靜壓軸承提供平台之承載力,徑向氣靜壓軸承則創造低摩擦的精密導引功能以提升其定位精度。電磁線圈被用來產生磁吸力,以與軸向氣浮力達到平衡關係。透過這力量的平衡,不但軸向軸承剛性可以最小化,而且軸向平台位置也可以精密控制。為了實現軸向定位控制,一個霍爾元件和一個磁石被整合以達成低負載的非接觸式位移感測。除此之外,典型PID控制程式是主動定位控制之核心。有限元素和實驗被用來探討氣磁浮平台上電磁和氣靜壓的效果,同時被動式以及主動式隔振性能也完成實驗驗證。

並列摘要


This thesis presents the development of a magnetic aerostatic vibration isolation platform, which is integrated with electromagnetic and aerostatic bearing principles. For the aerostatic bearing, the concept of cap-shaped aerostatic bearing is applied to combine radial and axial bearings inside a cap-shaped air film to enhance its bearing capacity. The axial aerostatic bearing provides the supporting force of the vibration isolation platform, and the radial aerostatic bearing creates frictionless guide to increase its positioning accuracy. The electromagnetic coil is used to generate magnetic attractive force to counterbalance the axial aerostatic bearing force. Through this force counterbalance, not only the axial bearing stiffness can be minimized but also the axial position of the platform can be precisely controlled. For realizing axial positioning control, a hall element and a magnet are integrated to achieve non-contact displacement measurement with less loading effect. Besides, the classic PID control algorithm is the main core of the active positioning control. The finite element analysis and experiment are carried out to comprehend its electromagnetic and aerostatic effects; and the performances of the passive and the active vibration isolations are also experimentally verified

參考文獻


[13] 吳翰杰,”整合套杯式氣靜壓軸承之氣渦輪轉子系統之設計開發與性能探討”, 台灣大學碩士論文, 2010.
[1] David Platus " Negative-stiffness vibration isolation in laser and optical systems," 24 November 2008, SPIE Newsroom.
[2] E.J. Chin, K.T. Lee, J. Winterflood, J. Jacob, D.G. Blair, and L. Ju, "Techniques for reducing the resonant frequency of Euler springvibration isolators, " Classical and Quantum Gravity 31 (2004) p959–p963.
[3] D.G. Blair, J.F. Liu, E.F. Moghaddam, and L. Ju, "Performance of an ultra low-frequency folded pendulum," Physics Letters A 193 (1994)p 223–p226.
[4] J. Winterflood , G. Losurdo, and D.G. Blair, "Initial results from a long-period conical pendulum vibration isolator with application for gravitational wave detection, " Physics Letters A 263 (1999) p9–p14.

延伸閱讀