透過您的圖書館登入
IP:18.227.21.218
  • 學位論文

吉他破音與延遲效果器模擬

Distortion and Delay Simulation for Guitar Effector

指導教授 : 鄭士康

摘要


吉他效果器大量運用在電吉他的彈奏上,任何彈奏電吉他的樂手都會研究效果器以找出屬於自己個性的效果,電吉他的樂手在彈奏他人的作品時也常希望能模仿彈奏者的音色。吉他有許多種不同的效果器,每種效果器也有許多不同的參數需要調整,因此要模仿彈奏者的音色需要長時間調整的一件事。本論文使用Hammerstein-Wiener 的模型以及類神經網路(Neural Network)來模仿彈奏者破音(Distortion)的音色,並針對延遲效果利用了自相關係數(Autocorrelation)方法來自動偵測延遲效果器的參數並進而模仿音色,在延遲以及破音二種效果同時使用的情況,結合Hammerstein-Wiener 以及自相關係數的方法來模仿音色。對於破音的模仿可達到99%的相似度,偵測延遲效果器的三個參數之平均正確率為90.27%,延遲以及破音同時使用的情況,其模仿平均可達95%的相似度。

並列摘要


Guitar effects are commonly used in playing electric guitar. The musicians of electric guitar player will study how to find out own guitar tone. When they playing others’ music, guitar players want to imitate the original guitar tone. Because there are a lot of different guitar effector, and there are many parameters on each effector, so the original tone imitation is very tough and need to take much time for learning. In this thesis we use computer to simulate distortion effect based on Hammerstein-Wiener and neural network. For delay effect simulation, autocorrelation method can be applied in delay parameters estimation, then we can use the information of parameters to simulate delay effect. For the delay and distortion effect, we use Hammerstein-Wiener and combine the autocorrelation to simulate delay and distortion situation. The fit of distortion simulation with neural network is 99%, the accuracy of three delay parameters with autocorrelation method is 90.27%, and the fit of delay and distortion simulation with Hammerstein-Wiener and autocorrelation is 95%.

參考文獻


[6] 蕭力維(國立臺灣大學), “吉他效果器效果辨認與延遲估計” 國 立 臺 灣 大 學 電機資訊學院 電機工程學研究所 碩 士 論 文., 2010
[1] K. Shi, X. Ma, and G. Tong Zhou, “Adaptive Acoustic Echo Cancellation in The Presence of Multiple Nonlinearities,” IEEE International Conference on Acoustics, Speech and Signal Processing, 2008
[2] T. Li, “Musical genre classification of audio signals,” IEEE Transactions on Speech and Audio Processing, vol. 10, no. 5, pp. 293-302, 2002.
[3] C. Silla Jr, et al., “A machine learning approach to automatic music genre classification,” RIAO, Pittsburgh, 2007
[5] M. Marolt, “Transcription of polyphonic piano music with neural networks,” Electrotechnical Conference, vol. 2, pp. 512-515, 2000

延伸閱讀