透過您的圖書館登入
IP:3.141.47.163
  • 學位論文

原物料前處理對纖維素薄膜特性之影響

Impact of Feedstock Pretreatment on Characteristic of Cellulose Films

指導教授 : 柯淳涵
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


纖維素是由D-葡萄糖以β-1,4-糖苷鍵組成,具有生物可降解、可再生等性質,可由植物細胞壁與細菌代謝產物取得,因纖維素具有氫鍵形成結晶區與非結晶區,而不溶於水與大多數的溶劑。本實驗分為兩大部分,第一部分為以漂白漿、結晶纖維素與細菌纖維素進行磷酸處理降低纖維素結晶度,並加入聚電解質後將纖維素溶於具有環境友善且高回收率的N-甲基嗎晽-N的氧化物水溶液(NMMO)中,製造出再生纖維素薄膜;第二部分為改變細菌纖維素生長基板、培養環境與模式,以光學顯微鏡、掃描式電子顯微鏡、原子力顯微鏡與統計分析方法檢測纖維素薄膜的特性。 實驗結果顯示,經過磷酸處理的纖維素,因其分子量較小其所製成的再生纖維素薄膜表面粗糙度下降,且觀察不到粗纖維束,而加入較高濃度的聚電解質可以幫助纖維素溶於NMMO溶液,使再生纖維素薄膜粗糙度下降,不同電性的聚電解質不影響再生纖維素薄膜表面粗糙度。不同基板、傾斜角度、培養方式所生產出的細菌纖維素薄膜其表面粗糙度並沒有顯著差異,但較接近基板的纖維素排列方向會與流動方向較為平行。經過前處理所生產出的薄膜表面平整且均一,不再具有粗纖維,未來具有應用在不同領域的潛力。

並列摘要


The objective of this experiment is to obtain the eco-friendly and well-aligned cellulose film. The experiment divide into two parts. First, we use three materials (BEK, Avicel and bacterial cellulose) treated with pretreatment and use N-methylmorpholine-N-oxide (NMMO) to produce regenerated cellulose films. Second, bacterial cellulose is cultivated on different condition. We use statistic method, POM, SEM, profilometer, and AFM to determine the morphology of cellulose films and use GPC and DP to determine the properties of cellulose. The pretreatment used in this research is phosphorylation and polyelectrolytes. Phosphorylation and polyelectrolytes help cellulose dissolve in NMMO which decrease the roughness of thin films.Bacterial cellulose is cultivated in different condition, such as substrate, tilt height and condition mode. The result shows that tilt height,substrate and condition mode can't influence the roughness of bacterial cellulose. However, the alignment of bacterial cellulose can be influenced by fluid direction. Pretreatment can obtain well-aligned cellulose film which can be applied in many different field.

參考文獻


1. Borzani W, Souza, SJ (1995) Mechanism of the film thickness increasing during the bacterial production of cellulose on non-agitaded liquid media. Biotechnol Lett 17:1271-1272. https://doi.org/10.1007/BF00128400
2. Budhiono A, Rosidi B, Taher H, Iguchi M (1999) Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydr Polym 40:137-143. https://doi.org/10.1016/S0144-8617(99)00050-8
3. Cakar F, Özer I, Aytekin AÖ, Şahin F (2014) Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydr Polym 106:7-13. https://doi.org/10.1016/j.carbpol.2014.01.103
4. Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107-124.
5. Hu W, Chen S, Yang Z, Liu L, Wang H (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. The J Phys Chem B 115:8453-8457. https://doi.org/10.1021/jp204422v

延伸閱讀