透過您的圖書館登入
IP:18.217.190.58
  • 學位論文

縮小化馬遜鼠競混成器之設計及其毫米波混波器及調變器之應用

The Reduced-Size Rat-Race Hybrid Using Marchand Balun Designs and Their Application of Millimeter-Wave Mixers and Modulators

指導教授 : 王暉

摘要


本論文研究方向著重於使用商用標準矽與砷化鎵微波單晶製程來設計毫米波馬遜鼠競混成器及其在混波器及調變器之應用。 在本論文中,我們提出了馬遜平衡轉換器中包含其耦合係數和輸出入阻抗的分析方法及系統化設計步驟,在過去已發表的馬遜平衡轉換器的分析及設計步驟中,僅包含頻寬或是在中心頻率輸出組抗的分析,而我們的設計步驟首次可以在整個操作頻率包含這些耦合係數、電氣長度和輸出組抗,延伸這個設計步驟將其應用在縮小化的馬遜鼠競混成器中,並且包含完整的同相位組合器設計方法。 使用上述的設計流程,可以縮小在晶片上實現的混成器所需面積,縮小化的馬遜鼠競混成器非常適合應用在微波的平衡電路中。我們利用這種混成器設計了四個60 GHz金氧半混波器積體電路,其中包含一個單平衡閘極混波器、兩個雙平衡閘極混波器和一個單平衡二極體混波器,就作者所知這是第一次嘗試在金氧半積體電路製程上設計雙平衡閘極混波器,而這種混波器可以進一步抑制本地振盪源在射頻埠漏波現象,而且可以降低本地振盪源在中頻埠漏波以防止其使得高增益的中頻鏈變成飽和。另外利用砷化鎵0.15微米高電子移動率電晶體製程實現了一個60 GHz單平衡二極體混波器。毫米波金氧半及砷化鎵單平衡二極體混波器晶片使用經典的180o鼠競混成器單平衡混波器架構,不同於其他已發表的鼠競混波器晶片,我們的晶片因為使用縮小化的馬遜鼠競混成器可以使晶片面積很小,而且在晶片布局上可以減少的跨接接線以保持較佳的布局對稱性。這些單平衡及雙平衡式主動及被動混波器都展現了與雙平衡式混波器相當的本地振盪源至射頻埠漏波抑制、較低的直流功率消耗、較低的本地振盪源驅動功率和較小的晶片面積。 我們還利用縮小化的馬遜鼠競混成器實現了三個30-50 GHz直接轉換向量調變器積體電路,其架構是Kowari反射式調變器,其使用製程分別為0.18微米金氧半、0.13微米金氧半場效電晶體及0.15微米砷化鎵變晶結構高電子移動率電晶體,另外也利用本文所介紹的縮小化馬遜平衡轉換器設計方法實現了兩個60 GHz金氧半場效電晶體被動環狀向量調變器電路。這些調變器除了最後一個設計具有輸出緩衝放大器需要直流消耗外,其他都不需直流消耗,在合理的頻寬內也可有效地抑制贅餘頻率項。而且因為使用縮小化的馬遜鼠競混成器或馬遜平衡轉換器的關係,本文中的調變器設計在相類似的製程中也可有較小的晶片面積,其中90奈米金氧半場效電晶體60GHz被動環狀向量調變器和其共模抑制輸出緩衝放大器展現了抑制本地振盪源漏波信號及其他贅餘頻率特性,這些調變器電路顯現Kowari反射式調變器及被動環狀向量調變器應用在毫米波無線通訊系統中可縮小毫米波向量調變器或是相移器的尺寸。

並列摘要


The purpose of this dissertation is to develop the reduced-size Marchand-rat-race hybrid design and its application of the mixers and modulators using commercial standard GaAs based HEMT and Si based CMOS MMIC processes. In this dissertation, the analyses and systematic design procedures of the Marchand balun with the coupling coefficients and load impedances selection method are proposed. The reported analyses and design procedures of the Marchand baluns only cover bandwidth or load impedance effect at center frequency. Our approach, for the first time, takes the coupling coefficient, electric length, and load impedances in the whole frequencies into consideration in the design procedures. Moreover, the design flow of the new type of the reduced-size Marchand-rat-race hybrid is developed, including the in-phase divider design. Using the design flow as discussed above, the reduced-size Marchand-rat-race hybrids which are often used in balanced circuits can be implemented in IC process. CMOS reduced-size rat-race hybrids using Marchand baluns are implemented in four 60GHz CMOS mixers, including one single-balanced gate mixer, one single-balanced diode mixer, and two double-balanced gate mixers. To the author’s knowledge, this is first attempt to design the double balanced gate mixer in CMOS IC process. They are designed to reduce the LO-to-IF leakage to avoid saturating the high gain IF chain and further improve the LO-to-RF isolation. The other one GaAs reduced-size rat-race hybrid using Marchand baluns is used in a 60GHz GaAs single-balanced diode mixer. The single-balance CMOS and GaAs pHEMT diode mixer chips are realized using the classical 180o single-balance diode mixer topology included the rat-race hybrid. Unlike other reported the rat-race diode mixer chips, our chips have the compact chip areas due to the small area of the reduced-size rat-race hybrids using Marchand baluns, and can have a symmetric layout with less cross-over interconnections. These single- and double-balance mixers, no matter passive or active, all demonstrate good LO-to-RF isolations comparable to the double-balance mixers with the low dc consumption, lower LO power and compact chip size. The reduced-size rat-race hybrids are used in three 30-50 GHz QPSK Kowari modulator ICs, including one 0.18-um CMOS QPSK Kowari modulator, one 0.13-um CMOS QPSK Kowari modulator, and one 0.15-um GaAs mHEMT QPSK Kowari modulator. The CMOS reduced-size Marchand baluns, which designed following the design procedures of reduced-size Marchand balun, are used in two 60-GHz CMOS resistive ring QPSK modulators. Our modulator designs all have zero dc power consumption, except last design with output buffer amplifiers, and low spurious response in broad bandwidths. Moreover, all the circuits have the compact size compared the same type of mixers in the similar IC processes due to the reduced-size Marchand-rat-race hybrids or Marchand baluns. The other 60 GHz 90-nm CMOS resistive ring IQ modulator with the common-mode rejection buffer demonstrates the LO leakage and spurious signal suppression capability. These chips demonstrate that the Kowari reflection-type modulators and resistive ring modulators are suitable for the compact-size millimeter-wave IQ modulators and phase shifters in wireless communication systems.

參考文獻


[1.1] Y. Shoji, C.-S Choi, and H. Ogawa, “ 70-GHz-band OFDM transceivers based on self-heterodyne scheme for millimeter-wave wireless personal area network,” IEEE Trans. Microwave Theory and Tech., vol. 54, no. 10, pp. 3664-3674, Oct. 2006
[1.4] K. W. Chang, H. Wang, G. Shreve, J. G. Harrinson, M. Core, A. Paxton, M. Yu, C. H. Chen, and G. S. Dow, “Forward-looking automotive radar using a W-band single-chip transceiver,” IEEE Trans. Microwave Theory and Tech., vol. 43, no. 7, pp. 1659-1668, July 1995
[1.7] D. Parker and D. Z. Zimmermann, “Phased arrays–part 1: Theory and architectures,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 3, pp. 678–687, Mar. 2002.
[1.8] H. L. Van Trees, Optimum Array Processing. Part IV of Detection, Estimation, and Modulation Theory. New York: Wiley, 2002.
[1.9] D. Parker and D. Z. Zimmermann, “Phased arrays–part II: Implementations, applications, and future trends,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 3, pp. 688–698, Mar. 2002.

延伸閱讀