透過您的圖書館登入
IP:3.147.89.85
  • 學位論文

以真空袋驅動之薄膜式塑膠微流體系統開發 —在可自驅動之快速數位聚合酶連鎖反應裝置之應用與驗證

Development of a Vacuum Pouch Driven Thin-Film Microfluidic System —Application and verification of a self-driven dPCR platform

指導教授 : 許聿翔

摘要


聚合酶連鎖反應技術已是目前核酸分子檢測的黃金標準並廣泛應用在臨床醫學、環境科學、以及食安問題。然而現今可攜式的聚合酶連鎖反應裝置,在產業界仍多舊停留在即時定量或恆溫核酸擴增技術開發,且提供一般診所或民眾居家操作的機型的研究方向則停留在一般的定性分析,目前尚未能從結果數據提供更多的資訊做後續的分析與處理。關鍵原因在於現有技術僅能部分實現可攜式裝置研發需求。本研究的目的是開發一個突破性的整合應用技術,以實現具有量化能力的可攜式的快數位聚合酶連鎖反應裝置,本研究之中心理念為針對數位聚合酶連鎖反應的各項技術進行觀念上的改進以有效提升其可攜式及個人化的性能,並實際完成此系統的初步驗證與實現。為達到輕薄的目標,本研究開發薄膜熱壓印技術,發展出全塑膠之薄膜型微流道裝置的製造技術。為達到精準定量的目標,本研究開發被動式微液體珠產生裝置,用以實現數位聚合酶連鎖反應裝置,並驗證可進行微液滴核酸放大技術與進行濃度定量。為達到可攜性及簡易操控能力,本研究結合被動式微流道設計,開發真空袋微流體填充技術,整體裝置重量僅約2公克、厚度小於0.4毫米,達到能在不同流率區段驅動微混合器,可在10秒內完成20μl的溶液混合,以及可連續依序驅動油水試劑,在2分鐘完成175顆體積為31pl的液滴陣列。藉由所開發裝置的薄型優勢,具有低熱質量及熱傳導距離短的特點,本研究開發快速熱循環裝置,僅需以薄膜式加熱片以及冷卻風扇即可達到在5分鐘以內完成35次熱循環的目標。總結,本研究開發一種全新的薄膜型微流體裝置及製造技術,驗證其可實現微流體驅動及操控的目標,以及在快數位聚合酶連鎖反應裝置上的實際應用可能性,此裝置為全塑膠製成,輕薄可拋棄且可大量製造,具備產品化優勢。

並列摘要


Polymerase chain reaction (PCR) has become as the golden standard of nuclear acid detections. It is the most popular detection methods for genetic analysis, clinical diagnostics, and food safety. Currently, its application for on-site detections is still limited for Yes or No detections. To overcome this challenge, we developed a novel microfluidic system to largely decrease the complexity and size of a digital PCR system. The main concept is to largely reduce the thickness of the microfluidic device for reducing the thermal mass of the overall system and speed up the dPCR process. To achieve this goal, we develop a thin-film hot embossing process to fabricate a thin-film microfluidic device and a vacuum pouch microfluidic (VPM) system. The thin-film microfluidic device is enclosed by the vacuum pouch, and fluidic can be manipulated using the negative pressure stored in the vacuum pouch. The thickness is less than 0.4mm and the weight is about 2g. Integrating this VPM system with a passive micromixer, we verify that a wide range of Reynolds number can be created to conduct mixing on the chip, and 20μl reagents can be mixed in 10 seconds. We further integrate this system with a passive droplet generator, and a 175-droplet array with 31 pl droplet size can be steadily generated on a VPM chip. Thus, the uniqueness of digital polymerase chain reaction can be realized on the chip for the goal of on-site quantification. Applying the low thermal mass and short conduction length, we developed a miniature thermal cycler that only need a film heater and a cooling fan to complete 35 thermal cycles in 5 minutes. In summary, a new type of microfluidic system is developed in this study. Using this VPM system, its capability to conduct rapid dPCR on a chip is experimentally verified. Finally, since this VPM device is plastic and do not have active components, it is fully disposable and is compatible with industrial process. Thus, it has a high potential to become as a commercial product.

參考文獻


REFERENCE
[1] Max Roser and Hannah Ritchie. (2016) Burden of Disease. Available from: https://ourworldindata.org/burden-of-disease?fbclid= IwAR0I88KzppGueXUvn zb4O6C6NsCzk1r9Ng79SpYq-TbtfH_x4G6Jm3_k_c0.
[2] Benziger, C.P., G.A. Roth, and A.E. Moran, The global burden of disease study and the preventable burden of NCD. Global heart, 2016. 11(4): p. 393-397.
[3] Kyu, H.H., et al., Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018. 392(10159): p. 1859-1922.
[4] Sia, S.K. and L.J. Kricka, Microfluidics and point-of-care testing. Lab on a Chip, 2008. 8(12): p. 1982-1983.

延伸閱讀