透過您的圖書館登入
IP:3.133.12.172
  • 學位論文

矽鍺金屬氧化半導體發光元件與應變矽技術

SiGe Metal-Oxide-Semiconductor Optoelectronics Devices and Strained-Si Technology

指導教授 : 劉致為
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在本篇論文之中,著重在矽基的金屬氧化半導體光電子元件,主要可以分成二大部分,分別探討矽鍺金屬氧化半導體的光學元件特性以及目前半導體業界所關注的應變矽技術。 長久以來,矽基發光一直是人類追求的夢想,因為光訊號的傳送比電訊號傳送速度快很多,人們也希望藉由矽基光電元件的發展,整合於現有的矽基電子元件來達成更大的市場用途。所以本篇論文前段部分,討論利用相容於當今半導體的元件金屬氧化半導體結構,做出散發波長在1.1微米至2.2微米的矽基發光源,在 1.3微米和1.5微米光通訊的重要波長上,可利用矽鍺量子點、量子井來達成,在2.2 微米的中紅外光波長範圍上,可以利用矽鍺的異質能帶特性,做出當今矽鍺最短能量、最長波長的發光元件,而在純鍺金屬氧化半導體發光元件上,也經由實驗觀測他的發光效率是矽的10倍以上,利用這個特性,成功的驗證出鍺金屬氧化半導體的光傳送系統,本論文之中並詳加討論矽發光和鍺發光的不同物理機制。 本論文的第二大部分討論矽基的電子元件,矽材料一直是當今半導體的主流材料,起因於他具有容易加工和表面易於有良好的氧化隔絕層,但是隨著人類對電子元件效能需求的提升,矽本質的電子電洞遷移率已經漸漸的不符合人類需求,所以應變矽技術就越顯重要,本論文在第二大部分,詳細探討應變矽技術的發展,原理以及應用。首先利用外加應變應力在應變矽金屬氧化半導體發光元件以及應變蕭基二極體,討論應力對電子電洞傳送能帶上的影響,進而利用k.p能帶計算來計算出有效質量、散射、遷移率對應力的物理機制。並與實驗資料做驗證,提出伸張式應力,壓縮式應力分別對n型電子元件,p型電子元件的載子遷移率有顯著提升,同時也發現在小伸張應力的情況之下,電洞的遷移率有先降後升不正常的現象,最後詳細分析當今應變矽元件結構的最佳化,並提出封裝式應變矽技術。

並列摘要


In this dissertation, two important topics are included. One is the SiGe based metal-insulator-semiconductor (MIS) light-emitting diodes (LED). The other is the strained Si technology which has received a lot of attention in the semiconductor industry, recently. Part I: It is a long sought goal to integrate ultralarge scale integrated (ULSI) circuits with the electro-optics to possibly overcome the speed limitation of electrical interconnects and to add extra functionalities on Si chip. LEDs and detectors are essential devices to achieve this goal. Ge based optoelectronic device also attracts great interest for scientific research and practical applications, recently. We have developed successfully a Ge MIS tunneling diodes which can serve both as a light emitter and a photodetector at a suitable bias. Data communication between the Ge MIS LED and the Ge MIS photodetector is also demonstrated up to 15 Mbit/sec. Part II: The strained silicon technology and package strain is reviewed and studied. The past several years have witnessed rapid growth in the study of strained silicon due to its potential ability to improve the performance of very large scale integrated circuits. In this work, we investigate the strain effect on the energy band structure firstly by strained Si MIS LED. The effective mass, scattering rate, and mobility in strained Si were also calculated theoretically by K.P model and compared with experimental data. The optimization of 3D device structure in strained Si device and Package strain technology has also been demonstrated further in this dissertation.

參考文獻


[2-1] C. W. Liu, M. H. Lee, M.-J. Chen, I. C. Lin, and C.-F. Lin, “Room-temperature electroluminescence from electron-hole plasmas in the metal oxide silicon tunneling diodes,” Appl. Phys. Lett. 76, pp. 1516-1518, 2000.
[2-2] B.-C. Hsu, S. T. Chang, T. C. Chen, P.-S. Kuo, P. S. Chen, Z. Pei, and C. W. Liu, “A High Efficient 820 nm MOS Ge Quantum Dot Photodetector” IEEE Electron Device Lett., 24, pp. 318-320, 2003
[2-3] B.-C. Hsu, S. T. Chang, C.-R. Shie, C.-C. Lai, P. S. Chen, and C. W. Liu, “High efficient 820 nm MOS Ge Quantum Dot Photodetectors for Short-Reach Integrated Optical Receivers with 1300 and 1500 nm Sensitivity,” in IEDM Tech. Dig., pp. 91-94, 2002.
[2-4] Y. H. Peng, C.-H. Hsu, C. H. Kuan, C. W. Liu, P. S. Chen, M.-J. Tsai, and Y. W. Suen, “The evolution of electroluminescence in Ge quantum-dot diodes with the fold number,” Appl. Phys. Lett. 85, pp. 6107-6109, 2004.
[2-5] J.-M. Baribeau, X. Wu, and D. J. Lockwood, J. Vac. Sci. Technol. A, 24(3), 663 (2006).

延伸閱讀