透過您的圖書館登入
IP:3.141.8.247
  • 學位論文

養殖池曝氣設備對流場與溶氧分布影響之研究

The Correlation between Flow Field and Dissolved Oxygen Distribution of the Aeration Equipment in the Ponds

指導教授 : 侯文祥
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


露天養殖池易受到外在因素影響水質,為控制水質品質穩定,業者認為換水是最有效的方式。為避免水資源過度浪費,以養殖環境平衡管理觀念,確保氧氣供應充足與分布均勻為穩定水質的重要關鍵之一。因此,在養殖池內設置各種曝氣設備為主要方法。 本研究針對台製水車及微細氣泡機二種曝氣設備進行CFdesign模擬,及嘉義、宜蘭等現場實測試驗。探討其配置方式、使用馬力數及配置數量等,對養殖池之流場、流速與溶氧分布之影響。將模擬分析之流場、流速分布面積百分比,區分為紅區、綠區、靜止區等三大區,做為現場實測分區之基準,以了解不同設備在流速分區之差異,並探討不同曝氣設備之增氧效率及設備經濟性。 由嘉義及宜蘭養殖池現場實驗結果顯示,靜止區所佔比例愈高,攪動水體能力愈低,所帶動的溶氧亦愈低。台製水車之流速分布以表、中水層較明顯,靜止區佔總面積之28.6∼50.7%,微細氣泡機之流速分布則以底水層較明顯,靜止區佔總面積之36.1∼97.9%,顯示台製水車攪動水體能力高於微細氣泡機。比較二種設備之增氧效率,以嘉義現場之微細氣泡機效果較佳,標準氧氣轉換效率為3.47 kgO2/hr,台製水車則為2.47 kgO2/hr。

並列摘要


Water quality in open ponds is vulnerable to be affected by external factors, in order to control the stability of water quality, practitioners in relevant industry consider that replacement water is the most effective way. To avoid excessive waste of water resources in order to balance the management of the breeding environment, and ensure adequate supply and distribution of oxygen to stabilize one of the key water quality. Therefore, in the ponds to set a variety of oxygen equipment as the main method. This study investigates the micro-bubble and paddlewheel oxygen equipment for CFdesign simulation, and Chiayi, Ilan field measurement test. Of the configuration, use the number and configuration of the quantity of horsepower, flow fields on the ponds, the impact velocity and dissolved oxygen distribution. The simulation of flow fields, velocity distribution area percentage, divided into red zone, the Green Zone and dead spots, as measured partition of the reference site, to understand the different equipment in the velocity difference partitions, and to explore the aeration efficiency of oxygen equipment and equipment economy. The field test results from Chiayi and Ilan show that ponds, the higher the proportion of dead spots, the lower the stirring capacity of water, the dissolved oxygen is also driven lower. paddlewheel velocity distribution by the surface and the water level more visible, dead spots of the total area of 28.6 ~ 50.7%, micro-bubble velocity distribution by the bottom water layer is obvious, dead spots of the total area of 36.1 ~ 97.9% shows that paddlewheel made body of water capacities than tankers stirred micro bubble machine. Comparison of two kinds of oxygen equipment efficiency to the scene of the micro-bubble best, the standard oxygen transfer efficiency is 3.47 kgO2/hr, paddlewheel, compared with 2.47 kgO2/hr.

參考文獻


[20] 侯文祥、梁維真、游政勳、葉曉娟、陳以容,2007,金門太湖水庫優養化之溶氧分層特徵與底層增氧改善效率研究,農業工程學報,53(4):44-55。
[22] 高正一,2007,創新式蝦池清淤系統之研發,台灣大學生農學院生物產業機電工程研究所碩士論文。
[1] Badrot-Nico, F., Guinot, V. and Brissaud, F., 2009, “Fluid flow pattern and water residence time in waste stabilisation ponds. ” Water Science & Technology—WST , 59(6), 1061-1068.
[3] Kang, Y.H., Lee, M.O., Choi, S.D., Sin, Y.S. , 2004, “2-D hydrodynamic model simulating paddlewheel-driven circulation in rectangular shrimp culture ponds.” Aquacultural, 231, 163-179.
[4] Luis Vinatea, Jose’ W. Carvalho, 2007, “Influence of water salinity on the SOTR of paddlewheel and propeller-aspirator-pump aerators, its relation to the number of aerators per hectare and electricity costs.” Aquacultural Engineering, 37, 73-78.

延伸閱讀