透過您的圖書館登入
IP:18.222.115.179
  • 學位論文

化學產氫系統之開發與整合:應用於燃料電池混和電力系統

Development and Integration of a Hydrogen Generation System: with Applications to PEMFC Hybrid Power Systems

指導教授 : 王富正

摘要


本論文開發一套定置型化學產氫系統,並建構其動態模型,以評估燃料電池電力系統之效能。我們採用硼氫化鈉溶液作為化學產氫系統的燃料,經催化劑於反應器中進行水解反應產生高純度之氫氣,供應一組3kW質子交換膜燃料電池使用,並分析其產氫動態特性和氫氣轉換率。在產氫系統硬體方面,我們與美菲德公司合作,對其原有之產氫機組進行改良,調整催化劑與反應器構造,改善系統散熱與硼氫化鈉溶液的進料流程,以提升其產氫速度和氫氣轉換率,並節省催化劑的使用量。為因應燃料電池系統在混和式電力系統架構下會有不同的氫氣使用流量,我們設計一套自動產氫控制機制,可依目前氫氣使用需求動態調節產氫量,隨時提供足量氫氣給燃料電池系統使用。最後我們將控制程式撰寫於ATMEL SAM3X8E之單晶片微處理機中,並整合各種感測器,開發一套產氫系統專用之電控模組,進行後續的燃料電池系統整合實驗。為瞭解此產氫系統動態特性,我們以前述之化學產氫系統為對象進行實驗,測試硼氫化鈉溶液濃度以及批次進料量對產氫系統性能的影響,並比較在各種操作條件下,化學產氫系統的產氫速度與氫氣轉換率的變化。其次,我們在現有的產氫系統架構下,以Matlab®軟體發展產氫系統的動態模型,模擬產氫系統的動態,並預測其氫氣產生量,讓我們能夠在連結產氫系統與燃料電池機組進行實驗測試前,即可以此模擬計算氫氣的產量與產速,並判斷是否足夠供應給燃料電池使用,可作為將來發展混和電力系統長時間運轉之測試評估工具。

並列摘要


This thesis develops an on-demand hydrogen generation system that can produce hydrogen from sodium borohydride (NaBH4) solution. We also construct a simulation model that can describe the system dynamics, and allow us to predict the hydrogen production for polymer electrolyte membrane fuel cell (PEMFC) hybrid power systems.First, we cooperate with M-Field Energy LTD. and redesign their fuel feeding and cooling sub-system. The modified system can dissipate heat faster, and it use less catalysts to produce hydrogen for operating a 3kW PEMFC. We also show that the new design can improve the hydrogen generation speed and conversion rate.Second, we develop an automatic control strategy that can adjust the feeding intervals of NaBH4 solution when the PEMFC load is varied. Furthermore, we implement the control strategy on a microcontroller (ATMEL SAM3X8E) and integrate the hydrogen generation system with the PEMFC hybrid power system.Last, we discuss the effects of NaBH4 feed volume and concentration, and develop a simulation model of the hydrogen generation system. The model can be applied to predict the system dynamics and to estimate hydrogen production. In the future, we can use the model to evaluate the hydrogen generation rates and efficiencies when integrating the hydrogen generation system with PEMFC hybrid power systems.

參考文獻


[6] Nanostructured electrode materials for electrochemical energy storage:
[8] PEM Fuel Cell:
[10] Li, Z.P., Morigazaki N., Liu B.H., Suda S., “Preparation of sodium borohydride by the reaction of MgH2 with dehydrated borax through ball milling at room temperature”, Journal of Alloys and Compounds, Volume 349, Pages 232-236, 2003.
[14] Levy, A., Brown, J.B., Lyons, C.J., “Catalyzed hydrolysis of sodium borohydride”, Industrial & Engineering Chemistry, Volume 52, Pages 211–214, 1960.
[15] Kaufman, C.M., Sen, B.J., “Hydrogen generation by hydrolysis of sodium tetrahydroborate: effects of acids and transition metals and their salts”, Journal of the Chemical Society, Volume 2, Page 307–313, 1985.

被引用紀錄


蕭奕劭(2016)。結合再生能源及電解產氫之混合電力系統之發展與最佳化設計〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201700219
方為弘(2016)。燃料電池電動車混合電力系統之研發〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201603061
陳漢哲(2015)。客製化混合電力系統模型建立與最佳化〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2015.02898

延伸閱讀