透過您的圖書館登入
IP:18.118.193.108
  • 學位論文

光電半導體產業晶粒製程區砷化鎵健康風險評估

Health risk assessment of Gallium Arsenide (GaAs) in Taiwanese Optoelectronic Semiconductor Industry

指導教授 : 吳焜裕
共同指導教授 : 黃耀輝
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


砷化鎵目前廣泛是用於微電子工業上,當員工參與砷化鎵晶體的切割、研磨及製程噴砂、清潔時就有可能暴露於砷化鎵的微粒當中。 本研究針對半導體產業中四元LED晶粒製程作業員工暴露於砷化鎵微粒的健康風險評估,藉由健康風險評估的危害鑑定(Hazard Identification),劑量反應關係評估(Dose-respones assessment),暴露評估(Exposure Assessment)與風險特性化(Risk Characterization) 四個主要步驟來執行。在慢性毒性研究中發現母大鼠在暴露砷化鎵微粒0.1mg/m³及1 mg/m³時,有肺泡/支氣管癌的產生。以此濃度換算成劑量後輸入至基準計量模式(BMDL)中進行推估,推估的結果為得到為0.02 mg/kg-bw/day,動物的CSF為5 (mg/kg/day)-1。由於動物呼吸與人類呼吸有差異,以物種間的外插10,人敏感度間的外插10,以100 代入,其人類CSF為0.05(mg/kg/day)-1。 經了解現場晶粒製造的流程及現場作業觀察後,以刻字作業及四元切割作業進行環境定點及個人採樣,作為暴露劑量的模擬,以模擬結果估算致癌風險。推估後結果晶粒製程區(以砷及鎵暴露)癌症風險為6.15*10-7;單以刻字站的致癌風險值為3.91*10-9,四元切割站的致癌風險則為1.23*10-6;單以砷的致癌風險值6.97*10-8,鎵的致癌風險值為1.03*10-7,為皆小於職業風險可接受10-4的範圍。

並列摘要


Gallium arsenide is widely used in the microelectronics industry; workers involved in the cutting, grinding, sandblasting, and cleaning of gallium arsenide wafers may be exposed to gallium arsenide particles, leading to health hazards. This study targeted the health risk assessment of semiconductor industry workers’ exposure to gallium arsenide particles from the manufacture of AlGaInP Light Emitting Diode (LEDs) chips. The health risk assessment process was conducted in four main parts: hazard identification, dose-response assessment, exposure assessment, and risk characterization. Chronic toxicity study found female rats developing alveolar and bronchial cancer when exposed to 0.1 mg/m3 and 1 mg/m3. The concentrations from chronic inhalation studies by NTP (2000) were converted to dosages and entered in the Benchmark Dose software for asssessment; the resulting estimation was 0.02 mg/kg-bw/day with a cancer slope factor (CSF) of 5(mg/kg/day)-1. To account for animal and human inhalation differences, a total uncertainty factor of 100 from inter-species extrapolation factor of 10 and human sensitivity factor of 10 was assigned. The resulting reference concentration and cancer slope factor (CSF) of gallium arsenide in human was 0.05(mg/kg/day)-1. After a walkthrough survey, lithography stations and AlGaInP trimming sations were selected to collect short-term environmental samples to assess workers’ chronic exposure. The calculated cancer risk of exposure to gallium arsenide from working at the manufacturing process was 6.15*10-7; the cancer risk of working at lithography station was 3.91*10-9; AlGaInP trimming station was 1.23*10-6. The cancer risks of exposure to arsenic and gallium were 6.97*10-8 and 1.03*10-7, respectively. The risks were all within the acceptable threshold for occupational risk of10-4.

參考文獻


1. Webb DR, Sipes IG, Car ter DE(1984). In vitro solubility and in vivo toxicity of gallium arsenide. Toxicol Appl Pharmacol;76:96-104.
2. Webb, D.R.; Wilson, S.E. & Carter, D.E. (1986)Comparative pulmonary toxicity of gallium arsenide, gallium(III) oxide or arsenic(III) oxide intratracheally instilled into rats. Toxicol. Appl. Pharmacol., , 82(3), 405-16.
3. Yamauchi H, Takahashi K, Yamamura Y. (1986) Metabolism and excretion of orally and intraperitoneally administered gallium arsenide in the hamster, Toxicology,;40:237-46.
8. 詹欣華(2013),半導體產業MOCVD機台維修工程師金屬物職暴露情形探討,國立臺灣大學公共衛生院職業醫學與工衛生研究所碩士論文。
10. Scansetti, G. (1992) Exposure to metals that have recently come into use. Sci. total Environ., 120,85–91.

延伸閱讀