透過您的圖書館登入
IP:3.137.170.14
  • 學位論文

高可拉伸性奈米粒子與二維材料複合光電晶體之特性研究

High-Stretchability and High-Responsivity Semiconductor Nanoparticles/2D Hybrid Phototransistor

指導教授 : 陳永芳

摘要


二維材料的應用開創了可變形電子元件的新篇章,在未來穿戴式電子科技對於這種可變形電子元件的需求勢必無所不在。然而二維材料先天的拉伸性的缺陷限制了其實際的應用與表現。因此本篇論文研究主要結合化學氣相沉積法製成之石墨烯與半導體量子點,並製作於嵌入銀奈米線的聚二甲基矽氧烷基板上以形成波浪狀可拉伸式光感測元件。我們成功地利用這樣獨特的波浪結構去克服石墨烯先天上拉伸性上的限制。並且結合了石墨烯的絕佳導電性與半導體量子點的高度光吸收,因此我們驗證了一個拉伸率高達百分之三十並且可重複拉伸的高感光之光電晶體。而其高感光效能更可比於硬性基板的元件。此種波浪結構的設計可以應用在許多不同的材料上,對於軟性電子元件的發展與設計勢必有非常大的貢獻。

並列摘要


Two dimensional (2D) materials have created a new possibility for flexible electronics, which will be omnipresent in future wearable technologies. However, the poor native stretchability of 2D materials limits its performance and practical applications. In order to circumvent this drawback, in this study, we proposed an hybrid nanocompsite made with 2D material, semiconductor nanoparticles and metallic nanowires, which was embedded in a biocompatible elastic ripple film. The excellent conductivity of 2D material and metallic nanowires can serve as good conducting channels, while semiconductor nanoparticles are responsible for highly sensitive photoabsorption. More importantly, the elastic ripple film can be used to overcome the limit of native stretchability of the constituent nanomaterials. Combing all these unique features, we demonstrated highly stretchable and ultrasensitive phototransistors. The new designed device can be stretched up to 30% with high repeatability. The calculated photoresponsivity, photocurrent gain and detectivity is found to be 106 A W-1, 107 and 1013 Jones, respectively, which are comparable with the rigid devices. Our approach is quite general, which can be extended to many other material systems, and therefore it paves a key step for designing high performance soft optoelectronic devices with practical applications.

參考文獻


(1) Stoppa, M.; Chiolerio, A. Wearable Electronics and Smart Textiles: A Critical Review. Sensors 2014, 14, 11957–11992.
(2) Service, R. F. Inorganic Electronics Begin to Flex Their Muscle. Sci. (Washington, DC, 2006, 312, 1593–1594.
(3) Nathan, A.; Ahnood, A.; Cole, M. T.; Lee, S.; Suzuki, Y.; Hiralal, P.; Bonaccorso, F.; Hasan, T.; Garcia-Gancedo, L.; Dyadyusha, A.; et al. Flexible Electronics: The next Ubiquitous Platform. Proc. IEEE 2012, 100, 1486–1517.
(4) Sun, T. M.; Wang, C. S.; Liao, C. S.; Lin, S. Y.; Perumal, P.; Chiang, C. W.; Chen, Y. F. Stretchable Random Lasers with Tunable Coherent Loops. ACS Nano 2015, 9, 12436–12441.
(5) Yan, C.; Kang, W.; Wang, J.; Cui, M.; Wang, X.; Foo, C. Y.; Chee, K. J.; Lee, P. S. Stretchable and Wearable Electrochromic Devices. ACS Nano 2014, 8, 316–322.

延伸閱讀