透過您的圖書館登入
IP:3.145.79.94
  • 學位論文

氧化金屬物/碳基材/聚苯胺奈米複合材料電極之製備及應用於高效能可撓式超級電容

Fabrication and application of metal oxide/carbon-based material/polyaniline nanocomposites for high-performance flexible supercapacitor

指導教授 : 林金福

摘要


可撓式之電子裝置具有很大的潛力應用在新一代的穿戴型電子產品上, 並可應用於醫療,通訊與體育上。其中可撓式的超級電容因其長效耐久,高功率密度與安全的特性被視為最用潛力的儲電裝置。 本論文利用電化學聚合法製備出三元系統之氧化奈米碳管/石墨烯/聚苯胺以及四元系統之(氧化釕,氧化錳,氧化鎳)金屬氧化物/氧化奈米碳管/石墨烯/聚苯胺複合材料在碳纖及碳布上。並以掃描式電子顯微鏡與X射線微量分析儀觀察其表面形態及元素分佈,再由傅立葉轉換紅外線光譜儀鑑定其分子結構及相互作用力。穿透式電子顯微鏡,X-光繞射儀,動態光散射則用於鑑定金屬氧化物之粒徑大小及粒徑分佈。電化學之特性將由定電流充/放電法,循環伏安法及電化學阻抗能譜來鑑定,結果顯示1 wt% 氧化釕/氧化奈米碳管/石墨烯/聚苯胺,2 wt% 氧化錳/氧化奈米碳管/石墨烯/聚苯胺及1 wt% 氧化鎳/氧化奈米碳管/石墨烯/聚苯胺複合材料在1A/g電流密度下分別達到1084F/g, 888F/g, 和804F/g的比電容量,在20A/g之電流密度下仍保持著803F/g, 563F/g, 和 371F/g 的比電容量。 此外,本實驗也利用氧化石墨烯/1-乙基-3-甲基咪唑啉双(三氟甲基磺酰基)亚胺複合材料作為膠態電解質製作出可撓式之超級電容裝置。在7.5分鐘之聚合時間下1wt% 氧化釕/氧化奈米碳管/石墨烯/聚苯胺,2wt% 氧化錳/氧化奈米碳管/石墨烯/聚苯胺,1wt% 氧化鎳/氧化奈米碳管/石墨烯/聚苯胺,氧化奈米碳管/石墨烯/聚苯胺和純聚苯胺製備出之可撓式超級電容裝置在1A/g電流密度下分別為531F/g, 478F/g, 441F/g,431F/g和394F/g的比電容量,在20 A/g之電流密度下也分別保持著47%,40%,30%,49%,37%的比電容量,以及在500次充放電後仍保持著至少90%之電容量,此外1wt% 氧化釕/氧化奈米碳管/石墨烯/聚苯胺最高之功率密度和能量密度分別為13 kW/kg與37 Wh/kg。 最後本實驗利用紅色之發光二極管來模擬出真實應用上之表現。這一系列之鑑定證明本實驗所製造之超級電容具有高效能之表現,並有潛力應用於新一代之可撓式電子裝置。

並列摘要


Flexible electronic devices have great potential as a new generation, light weight, flexible wearable applications for healthcare, communication and sportswear. The flexible supercapacitors are one of the most promising candidates due to their long cycle stability, high power density and safety. In this thesis a binary composites of oxidized carbon nanotube or graphene/PANI, ternary composites of oxidized carbon nanotube/graphene/PANI and quaternary composites of metal oxides/oxidized carbon nanotube/graphene/PANI were prepared by electro-polymerization deposition on carbon fiber and carbon cloth respectively. Their surface morphology and compositions were investigated by scanning electron microscopy (SEM), energy dispersive X-ray microanalysis (EDX) and Fourier transform infrared spectroscopy (FTIR). The results conform the formation of composite material. The particle size and size distribution of the metal oxides were measured by transmission electron microscopy (TEM), X-ray diffraction (XRD) and dynamic light scattering (DLS). Electrochemical measurements including galvanostatic charge discharge, cyclic voltammetry and electrochemical impedance were employed to evaluate their specific capacitance. The highest specific capacitances reach to 1084F/g, 888F/g, and 804F/g at 1A/g and 803F/g, 563F/g, and 371F/g at 20A/g for oxidized carbon nanotube/graphene/PANI composites incorporating with 1wt%RuO2, 2wt%MnO2 and 1wt%NiO respectively. Flexible Symmetrical Supercapacitor (FSSC) were also fabricated by using GO/EMITFSI ionic liquid composite as gel type electrolyte. The FSSC shows a remarkable performance including good capacitance (513 F/g, 478 F/g, 441 F/g, 431 F/g, 394 F/g at 1A/g for 1wt%RuO2/oxidized carbon nanotube/graphene/PANI, 2wt% MnO2 oxidized carbon nanotube/graphene/PANI, 1wt%NiO/ oxidized carbon nanotube/graphene/PANI respectively), great capability retention at 20A/g and excellent cycle life. 1wt%RuO2/oxidized carbon nanotube/graphene/PANI shows the maximum energy density of 37Wh/kg and the highest power density of 13kW/kg. We also demonstrate actual performance of FSSC by lighting up a red LED. Therefore, our study for flexible supercapacitor holds great potential for next generation lightweight and flexible electronics.

參考文獻


1. Simon, P.; Gogotsi, Y., Materials for electrochemical capacitors. Nat Mater 2008, 7 (11), 845-854.
2. Chen, M.; Li, W.; Shen, X.; Diao, G., Fabrication of Core–Shell α-Fe2O3@ Li4Ti5O12 Composite and Its Application in the Lithium Ion Batteries. ACS Applied Materials & Interfaces 2014, 6 (6), 4514-4523.
4. Dong, X.; Guo, Z.; Song, Y.; Hou, M.; Wang, J.; Wang, Y.; Xia, Y., Flexible and Wire-Shaped Micro-Supercapacitor Based on Ni(OH)2-Nanowire and Ordered Mesoporous Carbon Electrodes. Advanced Functional Materials 2014, 24 (22), 3405-3412.
5. Dunn, B.; Kamath, H.; Tarascon, J.-M., Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928-935.
6. Jo, Y.; Cho, W.-J.; Inamdar, A. I.; Kim, B. C.; Kim, J.; Kim, H.; Im, H.; Yu, K.-H.; Kim, D.-Y., Electrochemical supercapacitor properties of polyaniline thin films in organic salt added electrolytes. Journal of Applied Polymer Science 2014, 131 (11), n/a-n/a.

延伸閱讀