透過您的圖書館登入
IP:18.116.67.177
  • 學位論文

利用雙材料混和型層析管柱串聯奈米級液相層析質譜儀同時偵測極性與非極性濫用藥物

Improved simultaneous detection of polar and nonpolar drugs by bimaterial hybridized column on nanoLC-MS/MS system

指導教授 : 陳惠文
共同指導教授 : 陳珮珊(Pai-Shan Chen)

摘要


液相層析串聯質譜儀分析廣泛地被應用於諸多領域,在法醫學或生物領域中,奈米級液相層析質譜分析技術相對傳統液相層析又有高靈敏及樣品量需求少等優點,本篇研究欲將其應用於法醫毒理以偵測66種常見濫用藥物、其相關代謝物以及海洛因不純物-acetylthebaine之一級、二級代謝物。然而,分析物含括極性及非極性特性,難以同時使用一種層析管柱進行偵測,因此,本篇研究欲混和兩種固定相於一體以改善此缺點。首先,篩選七種固定相並以Hypersil gold C18及Porous graphite carbon (PGC) 作為最終兩混和材質,接著,嘗試以不同比例及混和方式比較分析物峰形及峰寬,並選擇1P9HG混和型層析管柱有較好之表現。然而,由於PGC的特殊性,一些分析物於最佳化時無法被偵測,推測可能因其有活性碳相似之性質導致分析物吸附,嘗試調整沖提液溫度及游離源電壓,同時評估分析物出現數目,最終發現仍有兩藥物消失(JWH-018 及acetylthebaol) 。排除此現象,整體而言1P9HG混和型層析管柱有最好之結果,期望未來能針對量少且極性程度差異大的樣品有實務上的應用。

並列摘要


Liquid chromatography coupling to mass spectrometry is widely used in several areas. In the forensic science or biological area, it is sometimes quite challenging for the detection of compounds in limited amount samples. The miniaturized Nano-LC present as a great choice for compensating this issue. Sixty-six drugs and phase I, II metabolites of acetylthebaine from heroin impurities were selected as our target analytes. A wide range of polarities are included which is quite difficult in detection within one sample shot due to the analytical column limited selection properties. In order to solve the problem, we tried to combine two materials with different properties out of seven columns. Hypersil gold C18 and Porous graphite carbon (PGC) were selected as our final mixing candidates. Several parameters had been evaluated, including mixing ratios and mixing fashions, by comparing analytes’ peak shape and peak width. The final pre-mixing 1P9HG column was selected with good performance to most compounds except for the disappearance for two compounds. Temperature and ion source voltage modulation had been tested, however still, missing in two analytes (JWH-018 and acetylthebaol). Besides the phenomenon, it may be useful in detection of a wide range polarities samples in limited amount.

參考文獻


1. Zavalin, A.; Todd, E. M.; Rawhouser, P. D.; Yang, J. H.; Norris, J. L.; Caprioli, R. M., Direct imaging of single cells and tissue at sub-cellular spatial resolution using transmission geometry MALDI MS. J Mass Spectrom 2012, 47 (11), 1473-1481.
2. Svatos, A., Mass spectrometric imaging of small molecules. Trends Biotechnol 2010, 28 (8), 425-434.
3. Pozebon, D.; Scheffler, G. L.; Dressler, V. L.; Nunes, M. A. G., Review of the applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to the analysis of biological samples. J Anal Atom Spectrom 2014, 29 (12), 2204-2228.
4. Piehowski, P. D.; Petyuk, V. A.; Orton, D. J.; Xie, F.; Moore, R. J.; Ramirez-Restrepo, M.; Engel, A.; Lieberman, A. P.; Albin, R. L.; Camp, D. G.; Smith, R. D.; Myers, A. J., Sources of Technical Variability in Quantitative LC-MS Proteomics: Human Brain Tissue Sample Analysis. J Proteome Res 2013, 12 (5), 2128-2137.
5. Deeb, S.; McKeown, D. A.; Torrance, H. J.; Wylie, F. M.; Logan, B. K.; Scott, K. S., Simultaneous Analysis of 22 Antiepileptic Drugs in Postmortem Blood, Serum and Plasma Using LC-MS-MS with a Focus on Their Role in Forensic Cases. J Anal Toxicol 2014, 38 (8), 485-494.

延伸閱讀